
GHDL Documentation
Release 1.0-dev

Tristan Gingold and contributors

Apr 14, 2020

Introduction

1 What is VHDL? 3

2 What is GHDL? 5

3 Who uses GHDL? 7

4 Contributing 9
4.1 Reporting bugs . 9
4.2 Requesting enhancements . 10
4.3 Improving the documentation . 10
4.4 Fork, modify and pull-request . 11
4.5 Related interesting projects . 11

5 Copyrights | Licenses 13
5.1 GNU GPLv2 . 13
5.2 CC-BY-SA . 14
5.3 List of Contributors . 14

I Getting GHDL 15

6 Releases and sources 17
6.1 Downloading pre-built packages . 17
6.2 Downloading Source Files . 18

7 Building GHDL from Sources 21
7.1 Directory structure . 22
7.2 mcode backend . 23
7.3 LLVM backend . 23
7.4 GCC backend . 24

8 Precompile Vendor Primitives 27
8.1 Supported Vendors Libraries . 27
8.2 Supported Simulation and Verification Libraries . 28
8.3 Script Configuration . 28
8.4 Compiling on Linux . 29
8.5 Compiling on Windows . 29
8.6 Configuration Files . 30

i

II GHDL usage 35

9 Quick Start Guide 37
9.1 Hello world program . 38
9.2 Heartbeat module . 39
9.3 Full adder module and testbench . 40
9.4 Working with non-trivial designs . 41

10 Invoking GHDL 43
10.1 Design building commands . 43
10.2 Design rebuilding commands . 45
10.3 Options . 47
10.4 Warnings . 49
10.5 Diagnostics Control . 50
10.6 Library commands . 50
10.7 VPI build commands . 51
10.8 IEEE library pitfalls . 52

11 Simulation (runtime) 55
11.1 Simulation options . 55
11.2 Export waveforms . 57
11.3 Export hierarchy and references . 58

12 Synthesis 61
12.1 Synthesis [--synth] . 61
12.2 Yosys plugin . 62

13 Additional Command Reference 63
13.1 Environment variables . 63
13.2 Misc commands . 63
13.3 File commands . 64
13.4 GCC/LLVM only commands . 65
13.5 Options . 65
13.6 Passing options to other programs . 66

14 Interfacing to other languages 67
14.1 Foreign declarations . 67
14.2 Linking foreign object files to GHDL . 68
14.3 Wrapping and starting a GHDL simulation from a foreign program 69
14.4 Linking GHDL to Ada/C . 69
14.5 Dynamically loading foreign objects from within GHDL . 70
14.6 Dynamically loading GHDL . 70
14.7 Using GRT from Ada . 71

15 Implementation of VHDL 73
15.1 VHDL standards . 73
15.2 PSL support . 74
15.3 Source representation . 75
15.4 Library database . 76
15.5 Top entity . 76
15.6 Using vendor libraries . 76

16 Implementation of VITAL 77
16.1 VITAL packages . 77
16.2 VHDL restrictions for VITAL . 77
16.3 Backannotation . 78
16.4 Negative constraint calculation . 78

17 Examples 79
17.1 Data exchange through VHPIDIRECT . 79

ii

III Development 81

18 Debugging 83
18.1 Simulation and runtime debugging options . 83

19 Coding Style 85
19.1 Ada . 85
19.2 Shell . 87
19.3 Guidelines to edit the documentation . 87
19.4 Documentation configuration . 88

20 Roadmap | Future Improvements 89
20.1 Documentation . 89
20.2 GSOC Ideas . 90

IV Internals 93

21 Overview 95

22 Front-end 97

23 AST 99
23.1 Introduction . 99
23.2 The AST in GHDL . 99
23.3 Why a meta-model ? . 100
23.4 Dealing with ownership . 100
23.5 Node Type . 101

V Index 103

24 Index 105

Index 107

iii

iv

GHDL Documentation, Release 1.0-dev

03.03.2019 - GHDL v0.36 was released.

23.02.2019 - GHDL v0.36-rc1 was released.

29.11.2018 - GHDL 20181129 was released.

20.12.2017 - A new GitHub organization was created.

14.12.2017 - GHDL 0.35 was released.

15.08.2017 - GHDL 0.34 was released.

23.10.2015 - GHDL 0.33 was released.

Introduction 1

GHDL Documentation, Release 1.0-dev

2 Introduction

CHAPTER 1

What is VHDL?

VHDL is an acronym for Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (HDL),
which is a programming language used to describe a logic circuit by function, data flow behavior, or structure.

Although VHDL was not designed for writing general purpose programs, VHDL is a programming language, and
you can write any algorithm with it. If you are able to write programs, you will find in VHDL features similar
to those found in procedural languages such as C, Python, or Ada. Indeed, VHDL derives most of its syntax and
semantics from Ada. Knowing Ada is an advantage for learning VHDL (it is an advantage in general as well).

However, VHDL was not designed as a general purpose language but as an HDL. As the name implies, VHDL
aims at modeling or documenting electronics systems. Due to the nature of hardware components which are
always running, VHDL is a highly concurrent language, built upon an event-based timing model.

Like a program written in any other language, a VHDL program can be executed. Since VHDL is used to model
designs, the term simulation is often used instead of execution, with the same meaning. At the same time, like a
design written in another HDL, a set of VHDL sources can be transformed with a synthesis tool into a netlist, that
is, a detailed gate-level implementation.

The development of VHDL started in 1983 and the standard is named IEEE 1076. Five revisions exist: 1987,
1993, 2002, 2008 and 2019. The standardization is handled by the VHDL Analysis and Standardization Group
(VASG/P1076).

3

https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/VHSIC
https://en.wikipedia.org/wiki/HDL
https://www.ieee.org/
http://ieeexplore.ieee.org/document/26487/
http://ieeexplore.ieee.org/document/392561/
http://ieeexplore.ieee.org/document/1003477/
http://ieeexplore.ieee.org/document/4772740/
https://ieeexplore.ieee.org/document/8938196
http://www.eda-twiki.org/vasg/

GHDL Documentation, Release 1.0-dev

4 Chapter 1. What is VHDL?

CHAPTER 2

What is GHDL?

GHDL is a shorthand for G Hardware Design Language (currently, G has no meaning). It is a VHDL analyzer,
compiler, simulator and (experimental) synthesizer that can process (nearly) any VHDL design.

Note: For almost 20 years, GHDL was not a synthesis tool: you could not create a netlist. Hence, most of
the content in this documentation corresponds to the usage of GHDL as a compiler/simulator. See Synthesis for
further details regarding synthesis.

Unlike some other simulators, GHDL is a compiler: it directly translates a VHDL file to machine code, without
using an intermediary language such as C or C++. Therefore, the compiled code should be faster and the analysis
time should be shorter than with a compiler using an intermediary language.

GHDL can use multiple back-ends, i.e. code generators, (GCC, LLVM or x86/i386 only, a built-in one named
mcode) and runs on GNU/Linux, Windows ™ and macOS ™; on x86, x86_64, armv6/armv7/aarch32/aarch64,
etc.

The current version of GHDL does not contain any built-in graphical viewer: you cannot see signal waves. You
can still check the behavior of your design with a test bench. Moreover, GHW, VCD or FST files can be produced,
which can be viewed with a waveform viewer, such as GtkWave.

GHDL aims at implementing VHDL as defined by IEEE 1076. It supports the 1987, 1993 and 2002 revisions and,
partially, 2008. PSL is also partially supported.

Several third party projects are supported: VUnit, OSVVM, cocotb (through the VPI interface), . . .

5

http://gcc.gnu.org/
http://llvm.org/
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/MacOS
http://ghdl.readthedocs.io/en/latest/using/Simulation.html?highlight=GHW#cmdoption-wave
https://en.wikipedia.org/wiki/Value_change_dump
https://en.wikipedia.org/wiki/Waveform_viewer
http://gtkwave.sourceforge.net/
http://ieeexplore.ieee.org/document/4772740/
http://ieeexplore.ieee.org/document/26487/
http://ieeexplore.ieee.org/document/392561/
http://ieeexplore.ieee.org/document/1003477/
http://ieeexplore.ieee.org/document/4772740/
https://en.wikipedia.org/wiki/Property_Specification_Language
https://vunit.github.io/
http://osvvm.org/
https://github.com/potentialventures/cocotb
https://en.wikipedia.org/wiki/Verilog_Procedural_Interface

GHDL Documentation, Release 1.0-dev

6 Chapter 2. What is GHDL?

CHAPTER 3

Who uses GHDL?

7

GHDL Documentation, Release 1.0-dev

8 Chapter 3. Who uses GHDL?

CHAPTER 4

Contributing

The first step might be to use GHDL and explore its possibilities in your own project. If you are new to VHDL,
see the Quick Start Guide for an introduction. Furthermore, we encourage you to read Invoking GHDL, where the
most commonly used options are explained. You can also check the complete Additional Command Reference.

If you are more familiar with GHDL, you might start asking yourself how it works internally. If so, you might
find Implementation of VHDL and Implementation of VITAL interesting.

While using GHDL, you might find flaws, such as bugs, missing features, typos in the documentation, or topics
which still are not covered. In order to improve GHDL, we welcome bug reports, suggestions, and contributions
for any aspect of GHDL. Whether it’s a bug or an enhancement, have a look at the and to see if someone already
told us about it. You might find a solution there.

If you found no information on your topic, please, report so that we are aware! You can reach us through various
ways:

Hint: Since the development of GHDL started fifteen years ago, multiple platforms have been used as a support
for both distribution and getting feedback. However, the development is now centralized in github.

Tip: How To Ask Questions The Smart Way

4.1 Reporting bugs

Tip:

• If the compiler crashes, this is a bug. Reliable tools never crash.

• If the compiler emits an error message for a perfectly valid input or does not emit an error message for an
invalid input, this may be a bug.

• If the executable created from your VHDL sources crashes, this may be a bug at runtime or the code itself
may be wrong. Since VHDL has a notion of pointers, an erroneous VHDL program (using invalid pointers
for example) may crash.

9

https://github.com/ghdl/ghdl/issues
https://github.com/ghdl/ghdl/issues?q=is%3Aissue+is%3Aclosed
www.catb.org/~esr/faqs/smart-questions.html

GHDL Documentation, Release 1.0-dev

• If a compiler message is not clear enough, please tell us. The error messages can be improved, but we do
not have enough experience with them.

Tip: It is suggested to test synthesis features with --synth, before processing the design with Yosys plugin.

Please, report issues of this kind through , as this allows us to categorize issues into groups and to assign developers
to them. You can track the issue’s state and see how it’s getting solved.

Important: As suggested in the bug report template, please elaborate a Minimal (non) Working Example (MWE)
prior to sending the report, so that the possible bug source is isolated. Should it fulfill the format requirements of
issue-runner, you would be able to test your bug with the latest GHDL version. Please do so in order to ensure
that the bug is not solved already.

Also, please include enough information in the bug report, for the maintainers to reproduce the problem. The
template includes:

• Operating system and version of GHDL (you can get it with ghdl --version).

• Whether you have built GHDL from sources (provide short SHA of the used commit) or used the binary
distribution (note which release/tag).

– If you cannot compile, please report which compiler you are using and the version.

• Content of the input files which comprise the MWE

• Description of the problem:

– Comment explaining whether the MWE should compile or not; if yes, whether or not is should run
until the assertion.

– What you expect to happen and what you actually get. If you know the LRM well enough, please
specify which paragraph might not be implemented well.

– Samples of any log.

– Anything else that you think would be helpful.

Note: If you don’t know the LRM, be aware that an issue claimed as a bug report may be rejected because there
is no bug according to it. GHDL aims at implementing VHDL as defined in IEEE 1076. However, some other
tools allow constructs which do not fully follow the standard revisions. Therefore, comparisons with other VHDL
variants is not a solid argument. Some of them are supported by GHDL (see IEEE library pitfalls), but any such
enhancement will have very low priority.

4.2 Requesting enhancements

All enhancements and feature requests are welcome. Please open a new issue to report any, so you can track the
request’s status and implementation. Depending on the complexity of the request, you may want to chat on Gitter,
to polish it before opening an issue.

4.3 Improving the documentation

If you found a mistake in the documentation, please send a comment. If you didn’t understand some parts of this
manual, please tell us. English is not our mother tongue, so this documentation may not be well-written.

10 Chapter 4. Contributing

https://github.com/ghdl/ghdl/issues/new?template=bug_report.md
https://en.wikipedia.org/wiki/Minimal_Working_Example
https://github.com/1138-4EB/issue-runner
http://ieeexplore.ieee.org/document/4772740/
https://github.com/ghdl/ghdl/issues/new?template=feature_request.md
https://github.com/ghdl/ghdl/issues/new
https://gitter.im/ghdl/ghdl1

GHDL Documentation, Release 1.0-dev

Likewise, rewriting part of the documentation or missing content (such as examples) is a good way to improve it.
Since it automatically is built from reStructuredText and Markdown sources, you can fork, modify and request the
maintainers to pull your copy. See Fork, modify and pull-request.

4.4 Fork, modify and pull-request

Tip:

• Before starting any modification, you might want to have a look at and , to check which other contributions
are being made or have been made. If you observe that the modifications you are about to start might conflict
with any other, please

• See section Directory structure to faster find the location of the sources you need to modify, and/or to know
where to place new ones.

Contributing source code/documentation via Git is very easy. Although we don’t provide direct write access to
our repositories, the project is hosted at GitHub, which follows a fork, edit and pull-request flow . That is:

1. Make a copy (fork) of the project.

2. Do the changes you wish (edit, add, rename, move and/or delete).

3. When you think that the changes are ready to be merged, notify the maintainers by opening a Pull Request
(PR).

4. The maintainers will review the proposed changes and will reply in the corresponding thread if any further
modification is required. If so, you can keep adding commits to the same branch, and the PR will be
automatically updated.

5. Last, the maintainers will merge your branch. You will be notified, the PR will be closed, and you’ll be
allowed to delete the branch, if you want.

Tip:

• It is recommended to read A successful Git branching model for a reference on how maintainers expect to
handle multiple branches. However, our actual model is not as exhaustive as explained there.

• Some commit messages can automatically close issues. This is a very useful feature, which you are not
required to use. However beware that using fix anywhere in the commit message can have side effects. If
you closed any issue unexpectedly, just reply to it (even if it’s closed) so that maintainers can check it.

• It is recommended to read Coding Style before contributing modifications to Ada sources.

4.5 Related interesting projects

If you have an interesting project, please send us feedback or get listed on our Who uses GHDL? page.

4.4. Fork, modify and pull-request 11

https://github.com/ghdl/ghdl/pulls
https://github.com/ghdl/ghdl/pulls
https://git-scm.com/
https://help.github.com/articles/github-flow/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/creating-a-pull-request/
http://nvie.com/posts/a-successful-git-branching-model/
https://help.github.com/articles/closing-issues-via-commit-messages/

GHDL Documentation, Release 1.0-dev

12 Chapter 4. Contributing

CHAPTER 5

Copyrights | Licenses

• The GHDL front-end package std.textio, and the runtime library GRT are given under GNU GPLv2.

• The documentation is given under CC-BY-SA.

Warning: As a consequence of the runtime copyright, you are not allowed to distribute an executable pro-
duced by GHDL without allowing access to the VHDL sources. Please, send a comment (Requesting enhance-
ments) if you don’t like this policy.

• The following packages are copyrighted by third parties (see corresponding sources for more information):

– These from library ieee are copyrighted by Institute of Electrical and Electronics Engineers (IEEE) :

* numeric_bit and numeric_std: the source files may be distributed without change, except
as permitted by the standard; these may not be sold or distributed for profit. [see also IEEE 1076.3
]

* std_logic_1164, Math_Real and Math_Complex

* VITAL_Primitives, VITAL_Timing and VITAL_Memory [see also IEEE 1076.4]

– The following sources may be used and distributed without restriction, provided that the copyright
statements are not removed from the files and that any derivative work contains the copyright notice.

* synopsys directory: std_logic_arith, std_logic_signed,
std_logic_unsigned and std_logic_textio are copyrighted by Synopsys, Inc.

* mentor directory: std_logic_arith is copyrighted by Mentor Graphics

5.1 GNU GPLv2

GHDL is copyright © 2002 - 2020 Tristan Gingold.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

13

https://www.ieee.org
http://ieeexplore.ieee.org/document/592543/
http://ieeexplore.ieee.org/document/954750/
https://www.synopsys.com/
https://www.mentor.com
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GHDL Documentation, Release 1.0-dev

5.2 CC-BY-SA

This is a free documentation; you can redistribute it and/or modify it under the terms of the Creative Commons
Attribution-ShareAlike 4.0 license. You are free to share (copy and redistribute the material in any medium or
format) and/or adapt (remix, transform, and build upon the material for any purpose, even commercially). We
cannot revoke these freedoms as long as you follow the these terms:

• Attribution: you must provide the name of the creator and attribution parties (more info), a copyright
notice, a license notice, a disclaimer notice, a link to the material, a link to the license and indicate if
changes were made (see marking guide and more info). You may do so in any reasonable manner, but not
in any way that suggests we endorse you or your use.

• ShareAlike: if you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

• No additional restrictions: you may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

See CC-BY-SA-4.0 Legal Code for more details.

5.3 List of Contributors

Contributor1 Role
Baggett, Jonas signal selection
Bertram, Felix VPI interface
Davis, Brian Windows Mcode builds
Drummond,
Brian

GCC 4.8.2 update, OSVVM port, some bugfixes

Gingold, Tristan2 Sole author of GHDL as a whole
Jensen, Adam FreeBSD builds
Koch, Markus vendor pre-compile script for Lattice (GNU/Linux)
Koontz, David Mac OSX builds, LRM compliance work, bugfix analyses
Lehmann,
Patrick

Windows compile scripts, vendor library pre-compile scripts (win+lin), building in
MinGW, AppVeyor integration.

Martinez-Corral,
Unai

Docker, CI, Docs

van Rantwijk,
Joris

Debian packaging

Only those who made substantial contributions are shown in the table above, but many others contributed with
minor patches. You can find a list at

With apologies to anyone who ought to be either on this table or in the GitHub contributor list, but isn’t. Thanks
also to all those who have reported bugs and support issues, and often patches and testcases to either the late gna!
website or sourceforge.net/p/ghdl-updates/tickets.

1 In alphabetical order
2 Maintainer

14 Chapter 5. Copyrights | Licenses

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://wiki.creativecommons.org/wiki/License_Versions#Detailed_attribution_comparison_chart
https://wiki.creativecommons.org/wiki/Best_practices_for_attribution#This_is_a_good_attribution_for_material_you_modified_slightly
https://wiki.creativecommons.org/wiki/License_Versions#Modifications_and_adaptations_must_be_marked_as_such
https://creativecommons.org/licenses/by-sa/4.0/legalcode.txt
https://github.com/ghdl/ghdl/graphs/contributors
https://sourceforge.net/p/ghdl-updates/tickets/

Part I

Getting GHDL

15

CHAPTER 6

Releases and sources

Contents of this Page

• Downloading pre-built packages

• Downloading Source Files

6.1 Downloading pre-built packages

OS Backend Size Downloads
buster mcode-gpl.src 3.85 MB v0.37/ghdl-0.37-buster-mcode-gpl.src.tgz
buster mcode-gpl 2.68 MB v0.37/ghdl-0.37-buster-mcode-gpl.tgz
buster mcode-synth 3.57 MB v0.37/ghdl-0.37-buster-mcode-synth.tgz
buster mcode 3.01 MB v0.37/ghdl-0.37-buster-mcode.tgz
fedora31 LLVM 6.55 MB v0.37/ghdl-0.37-fedora31-llvm.tgz
fedora31 mcode 2.93 MB v0.37/ghdl-0.37-fedora31-mcode.tgz
Max OS X mcode 2.22 MB v0.37/ghdl-0.37-macosx-mcode.tgz
Windows x86 (MinGW32) mcode 4.89 MB v0.37/ghdl-0.37-mingw32-mcode.zip
Windows x86 (MinGW64) LLVM 19.99 MB v0.37/ghdl-0.37-mingw64-llvm.zip
ubuntu16 llvm-3.9 6.51 MB v0.37/ghdl-0.37-ubuntu16-llvm-3.9.tgz
ubuntu16 mcode 2.89 MB v0.37/ghdl-0.37-ubuntu16-mcode.tgz
Sum: v0.37

17

https://github.com/ghdl/ghdl/releases/download/v0.37/ghdl-0.37-buster-mcode-gpl.src.tgz
https://github.com/ghdl/ghdl/releases/download/v0.37/ghdl-0.37-buster-mcode-gpl.tgz
https://github.com/ghdl/ghdl/releases/download/v0.37/ghdl-0.37-buster-mcode-synth.tgz
https://github.com/ghdl/ghdl/releases/download/v0.37/ghdl-0.37-buster-mcode.tgz
https://github.com/ghdl/ghdl/releases/download/v0.37/ghdl-0.37-fedora31-llvm.tgz
https://github.com/ghdl/ghdl/releases/download/v0.37/ghdl-0.37-fedora31-mcode.tgz
https://github.com/ghdl/ghdl/releases/download/v0.37/ghdl-0.37-macosx-mcode.tgz
https://github.com/ghdl/ghdl/releases/download/v0.37/ghdl-0.37-mingw32-mcode.zip
https://github.com/ghdl/ghdl/releases/download/v0.37/ghdl-0.37-mingw64-llvm.zip
https://github.com/ghdl/ghdl/releases/download/v0.37/ghdl-0.37-ubuntu16-llvm-3.9.tgz
https://github.com/ghdl/ghdl/releases/download/v0.37/ghdl-0.37-ubuntu16-mcode.tgz
https://github.com/ghdl/ghdl/releases/v0.37

GHDL Documentation, Release 1.0-dev

Pre-built packages of older releases

Release/Tag Date
v0.36 2019-03-03
v0.36-rc1 2019-02-23
20181129 2018-11-29
v0.35 2017-12-14
v0.34 2017-08-15
2017-03-01 2017-03-01
2016-09-14 2016-09-14
2016-06-07 2016-06-07
2016-05-03 2016-05-03
v0.33 2015-11-18

6.2 Downloading Source Files

Hint: All the following procedures will retrieve the latest development version of GHDL, i.e., the master branch
at github.com/ghdl/ghdl. We do our best to keep it stable, but bugs can seldom be published. See HINT boxes
below for instructions to get older releases.

Tarball/zip-file

GHDL can be downloaded as a zip-file or tarball from GitHub. See the following table, to choose your desired
format/version:

Hint: To download a specific version of GHDL, use this alternative URL, where <format> is tar.gz or zip:
https://codeload.github.com/ghdl/ghdl/<format>/<tag>.

git clone

GHDL can be downloaded (cloned) with git clone from GitHub. GitHub offers the transfer protocols HTTPS
and SSH. You should use SSH if you have a GitHub account and have already uploaded an OpenSSH public key
to GitHub, otherwise use HTTPS if you have no account or you want to use login credentials.

Protocol GitHub Repository URL
HTTPS https://github.com/ghdl/ghdl.git
SSH ssh://git@github.com:ghdl/ghdl.git

Hint: Execute git checkout -b stable <tag> after git clone, to checkout a specific version of
GHDL.

Command line instructions to clone GHDL with HTTPS protocol:

cd GitRoot
git clone "https://github.com/ghdl/ghdl.git" ghdl
cd ghdl
git remote rename origin github

Command line instructions to clone GHDL with SSH protocol:

18 Chapter 6. Releases and sources

https://github.com/ghdl/ghdl/releases/v0.36
https://github.com/ghdl/ghdl/releases/v0.36-rc1
https://github.com/ghdl/ghdl/releases/20181129
https://github.com/ghdl/ghdl/releases/v0.35
https://github.com/ghdl/ghdl/releases/v0.34
https://github.com/ghdl/ghdl/releases/2017-03-01
https://github.com/ghdl/ghdl/releases/2016-09-14
https://github.com/ghdl/ghdl/releases/2016-06-07
https://github.com/ghdl/ghdl/releases/2016-05-03
https://github.com/ghdl/ghdl/releases/v0.33
https://github.com/ghdl/ghdl
https://github.com/ghdl/ghdl.git
ssh://git@github.com:ghdl/ghdl.git

GHDL Documentation, Release 1.0-dev

cd GitRoot
git clone "ssh://git@github.com:ghdl/ghdl.git" ghdl
cd ghdl
git remote rename origin github

Note: Executing the following instructions in Windows Command Prompt (cmd.exe) won’t function or will re-
sult in errors! All Windows command line instructions are intended for Windows PowerShell, if not marked
otherwise. Windows PowerShell can be installed or upgraded to v5.1 by installing the Windows Manage-
ment Framework.

6.2. Downloading Source Files 19

https://docs.microsoft.com/en-us/powershell/wmf/5.1/install-configure
https://docs.microsoft.com/en-us/powershell/wmf/5.1/install-configure

GHDL Documentation, Release 1.0-dev

20 Chapter 6. Releases and sources

CHAPTER 7

Building GHDL from Sources

Download

GHDL can be downloaded as a zip-file/tar-file (latest ‘master’ branch) or cloned with git clone from GitHub.
GitHub offers HTTPS and SSH as transfer protocols. See the Downloading Source Files page for further details.

Important: Since GHDL is written in Ada, independently of the code generator you use, the a compiler is
required. Most GNU/Linux package managers provide a package named gcc-ada or gcc-gnat. Alternatively,
GNU Ada compiler, GNAT GPL, can be downloaded anonymously from libre.adacore.com (2014, or later; for x86,
32 or 64 bits). Then, untar and run the doinstall script.

Attention: Since v0.37, GHDL’s synthesis features require GCC >=8.1, due to some new GNAT features
which are not available in previous releases. Users with older versions (who don’t need synthesis) can config-
ure GHDL with option --disable-synth.

Available back-ends

GHDL currently supports three different back-ends (code generators):

• mcode - built-in x86 (or x86_64) code generator

• GCC - Gnu Compiler Collection (gcc.gnu.org)

• LLVM - Low-Level Virtual Machine (llvm.org)

Here is a short comparison, so that you can choose the one you want to use:

21

https://github.com/ghdl/ghdl/archive/master.zip
https://github.com/ghdl/ghdl/archive/master.tar.gz
http://libre.adacore.com/tools/gnat-gpl-edition/
http://gcc.gnu.org/
http://llvm.org/

GHDL Documentation, Release 1.0-dev

Back-end Pros Cons
mcode

• Very easy to build
• Very quick analysis
• Can handle very large de-

signs

• Simulation is slower
• x86_64/i386 only

LLVM
• Generated code is faster
• Generated code can be de-

bugged (with -g)
• Easier to build than GCC
• Ported to many plat-

forms (x86, x86_64,
armv7/aarch64)

• Build is more complex than
mcode

GCC
• Generated code is faster

(particularly with -O or
-O2)

• Generated code can be de-
bugged (with -g)

• Ported to many platforms
(x86, x86_64, PowerPC,
SPARC)

• Build is even more complex
• Analysis can take time (par-

ticularly for large units)
• Code coverage collection

(gcov) is unique to GCC

7.1 Directory structure

• src: sources of GHDL, all of them in Ada.

• libraries: mostly third party libraries such as, ieee, std, synopsys and vital. Except for a few shell and
Python scripts, all the content is written in VHDL.

– Vendors like Altera, Lattice and Xilinx have their own simulation libraries, especially for FPGA prim-
itives, soft and hard macros. These libraries cannot be shipped with GHDL, but we offer prepared
compile scripts to pre-compile the vendor libraries, if the vendor tool is present on the computer.
These are located in libraries/vendor. See Precompile Vendor Primitives for information on
how to use them.

• dist: scripts and auxiliary files to build GHDL in different environments:

– gcc: header and configuration files to build GHDL with GCC (all platforms).

– linux: build and test script written in shell, and other auxiliary files used to i) launch docker con-
tainers and ii) automate multiple builds in Travis CI.

– windows:

* mcode:

* appveyor:

• doc: Markdown and reStructuredText sources and auxiliary files to build the documentation with Sphinx.
In fact, Read the Docs (RTD) is used to automatically build and deploy this site and/or PDF you are reading.

• testsuite: files used for testing.

• .yml configuration files for CI environments (readthedocs, travis, and appveyor) and ignore files
for source control management tools (git and .hg).

• Files for building GHDL: configure and Makefile.in.

22 Chapter 7. Building GHDL from Sources

https://travis-ci.org/
http://www.sphinx-doc.org
http://readthedocs.org

GHDL Documentation, Release 1.0-dev

• Auxiliary files for development: .gdbinit and ghdl.gpr.in (GNAT project file).

• Text files: COPYING.md, NEWS.md, and README.md.

7.2 mcode backend

The mcode backend is available for all supported platforms and is also the simplest procedure, because it requires
the fewest dependencies and configuration options.

7.2.1 GCC/GNAT: GNU/Linux or Windows (MinGW/MSYS2)

Requirements

• GCC (Gnu Compiler Collection)

• GNAT (Ada compiler for GCC)

GHDL is configured by configure and built by make.

• First, GHDL needs to be configured. It is common to specify a PREFIX (installation directory like /usr/
local or /opt/ghdl). Without any other option, configure selects mcode as the backend.

• Next, make starts the compilation process.

• Finally, make install installs GHDL into the installation directory specified by PREFIX.

Hint: ON GNU/Linux, you may need super user privileges (sudo ...).

Example:

$ cd <ghdl>
$ mkdir build
$ cd build
$../configure --prefix=PREFIX
$ make
$ make install

7.2.2 GNAT GPL: Windows

Requirements

• GNAT GPL from http://libre.adacore.com

• PowerShell 4

• PowerShell Community Extensions (PSCX)

compile.ps1

7.3 LLVM backend

Requirements

• GCC (Gnu Compiler Collection)

7.2. mcode backend 23

http://libre.adacore.com

GHDL Documentation, Release 1.0-dev

• GNAT (Ada compiler for GCC)

• LLVM (Low-Level-Virtual Machine) and CLANG (Compiler front-end for LLVM): 3.5, 3.8, 3.9, 4.0, 5.0,
6.0, 7.0, 8.0, 9.0 or 10.0

7.3.1 GCC/GNAT: GNU/Linux or Windows (MinGW/MSYS2)

Hint: You need to install LLVM (usually depends on libedit, see #29). Debugging is only supported with
LLVM 3.5.

GHDL is configured by configure and built by make.

• First, GHDL needs to be configured. It is common to specify a PREFIX (installation directory like
/usr/local or /opt/ghdl). Set the proper arg, ./configure --with-llvm-config, to
select LLVM backend. If llvm-config is not in your path, you can specify it: ./configure
--with-llvm-config=LLVM_INSTALL/bin/llvm-config.

• Next, make starts the compilation process.

• Finally, make install installs GHDL into the installation directory specified by PREFIX.

Example:

$ cd <ghdl>
$ mkdir build
$ cd build
$../configure --with-llvm-config --prefix=PREFIX
$ make
$ make install

Hint: If you want to have stack backtraces on errors (like assert failure or index of out bounds), you need
to configure and build libbacktrace from GCC (you don’t need to configure GCC). Then add the fol-
lowing arg to configure: --with-backtrace-lib=/path-to-gcc-build/libbacktrace/.libs/
libbacktrace.a

7.4 GCC backend

Todo: Instructions to build GHDL with GCC backend on Windows are not available yet.

Requirements

• GCC (Gnu Compiler Collection)

• GNAT (Ada compiler for GCC)

• GCC source files. Download and untar the sources of version 4.9.x, 5.x, 6.x, 7.x, 8.x, 9.x or 10.x.

Hint: There are some dependencies for building GCC (gmp, mpfr and mpc). If you have not installed
them on your system, you can either build them manually or use the download_prerequisites script
provided in the GCC source tree (recommended): cd /path/to/gcc/source/dir && ./contrib/
download_prerequisites.

24 Chapter 7. Building GHDL from Sources

https://github.com/ghdl/ghdl/issues/29

GHDL Documentation, Release 1.0-dev

• First configure GHDL, specify GCC source directory and installation prefix (like /usr/local or /opt/
ghdl).

• Next, invoke make copy-sources to copy GHDL sources in the source directory.

• Then, configure GCC. The list of --disable configure options can be adjusted to your needs. GHDL
does not require all these optional libraries and disabling them will speed up the build.

• Now, build and install GCC with make.

• Last, build and install GHDL libraries.

Example:

$ cd <ghdl>
$ mkdir build
$ cd build
$../configure --with-gcc=/path/to/gcc/source/dir --prefix=/usr/local
$ make copy-sources
$ mkdir gcc-objs; cd gcc-objs
$ /path/to/gcc/source/dir/configure --prefix=/usr/local --enable-languages=c,vhdl \
--disable-bootstrap --disable-lto --disable-multilib --disable-libssp \
--disable-libgomp --disable-libquadmath
$ make -j2 && make install
$ cd /path/to/ghdl/source/dir/build
$ make ghdllib
$ make install

Hint: Note that the prefix directory to configure gcc must be the same as the one used to configure GHDL. If
you have manually built gmp/mpfr/mpc (without using the script in contrib), and, if you have installed them
in a non-standard directory, you may need to add --with-gmp=GMP_INSTALL_DIR.

Hint: If your system gcc was configured with --enable-default-pie (check if that option appears in the
output of gcc -v), you should also add it.

Hint: If you don’t want to install makeinfo, do make install MAKEINFO=true instead.

Hint: Once GCC (with GHDL) has been built once, it is possible to work on the GHDL source tree without
copying it in the GCC tree. Commands are:

$ make ghdl1-gcc # Build the compiler
$ make ghdl_gcc # Build the driver
$ make libs.vhdl.local_gcc # Compile the vhdl libraries
$ make grt-all # Build the GHDL runtime
$ make install.vpi.local # Locally install vpi files

In src/ortho/gcc, create a Makefile.conf file that sets the following variables:

AGCC_GCCSRC_DIR=/path/to/gcc/sources
AGCC_GCCOBJ_DIR=/path/to/gcc/build

If your system gcc was built with --enable-default-pie, add -no-pie option for linking.

7.4. GCC backend 25

GHDL Documentation, Release 1.0-dev

Hint: For ppc64/ppc64le platform, the object file format contains an identifier for the source language. Be-
cause gcc doesn’t know about VHDL, gcc crashes very early. This could be fixed with a very simple change in
gcc/config/rs6000/rs6000.c (gcc/config/rs6000/rs6000-logue.c since gcc 10), function
rs6000_output_function_epilogue:

|| ! strcmp (language_string, "GNU GIMPLE")
|| ! strcmp (language_string, "GNU Go")
|| ! strcmp (language_string, "GNU D")

- || ! strcmp (language_string, "libgccjit"))
+ || ! strcmp (language_string, "libgccjit")
+ || ! strcmp (language_string, "vhdl"))

i = 0;

Hint: The output of both GCC and LLVM is an executable file, but mcode does not generate any. Therefore,
if using GCC/LLVM, the call with argument -r can be replaced with direct execution of the binary. See section
Quick Start Guide.

After making your choice, you can jump to the corresponding section. However, we suggest you to read Directory
structure first, so that you know where the content will be placed and which files are expected to be created.

Hint: In these instructions, the configure script is executed in the source directory; but you can execute in a
different directory too, like this:

$ mkdir ghdl-objs
$ cd ghdl-objs
$../path/to/ghdl/configure ...

Hint: On Windows, building GHDL with mcode backend and GNAT GPL 32 bit seems to be the only way to get
a standalone native executable.

• MINGW/MSYS2 builds depend on the environment/runtime.

• For 64 bit, no native compiler exists from AdaCore.

• That Ada to .NET compiler, which might work for 32 or 64 bit. is not up-to-date.

26 Chapter 7. Building GHDL from Sources

CHAPTER 8

Precompile Vendor Primitives

Vendors like Altera, Lattice and Xilinx have their own simulation libraries, especially for FPGA primitives, soft
and hard macros. These libraries cannot be shipped with GHDL, but we offer prepared compile scripts to pre-
compile the vendor libraries, if the vendor tool is present on the computer. There are also popular simulation and
verification libraries like OSVVM1 or UVVM2, which can be pre-compiled, too.

The compilation scripts are writen in the shell languages: PowerShell for Windows ™ and Bash for GNU/Linux.
The compile scripts can colorize the GHDL warning and error lines with the help of grc/grcat3.

8.1 Supported Vendors Libraries

• Altera/Intel Quartus (13.0 or later):

– lpm, sgate

– altera, altera_mf, altera_lnsim

– arriaii, arriaii_pcie_hip, arriaiigz

– arriav, arriavgz, arriavgz_pcie_hip

– cycloneiv, cycloneiv_pcie_hip, cycloneive

– cyclonev

– max, maxii, maxv

– stratixiv, stratixiv_pcie_hip

– stratixv, stratixv_pcie_hip

– fiftyfivenm, twentynm

• Lattice (3.6 or later):

– ec

– ecp, ecp2, ecp3, ecp5u

– lptm, lptm2

1 OSVVM http://github.com/OSVVM/OSVVM
2 UVVM https://github.com/UVVM/UVVM_All
3 Generic Colourizer http://kassiopeia.juls.savba.sk/~garabik/software/grc.html

27

http://github.com/OSVVM/OSVVM
https://github.com/UVVM/UVVM_All
http://kassiopeia.juls.savba.sk/~garabik/software/grc.html

GHDL Documentation, Release 1.0-dev

– machxo, machxo2, machxo3l

– sc, scm

– xp, xp2

• Xilinx ISE (14.0 or later):

– unisim (incl. secureip)

– unimacro

– simprim (incl. secureip)

– xilinxcorelib

• Xilinx Vivado (2014.1 or later):

– unisim (incl. secureip)

– unimacro

8.2 Supported Simulation and Verification Libraries

• OSVVM (for VHDL-2008)

– osvvm

• UVVM (for VHDL-2008)

– uvvm-utilities

– uvvm-vvc-framework

– uvvm-vip-avalon_mm

– uvvm-vip-axi_lite

– uvvm-vip-axi_stream

– uvvm-vip-gpio

– uvvm-vip-i2c

– uvvm-vip-sbi

– uvvm-vip-spi

– uvvm-vip-uart

8.3 Script Configuration

The vendor library compile scripts need to know where the used / latest vendor tool chain is installed. Therefore,
the scripts implement a default installation directory search as well as environment variable checks. If a vendor
tool cannot be detected or the script chooses the wrong vendor library source directory, then it’s possible to provide
the path via –source or -Source.

The generated output is stored relative to the current working directory. The scripts create a sub-directory for each
vendor. The default output directory can be overwritten by the parameter –output or -Output.

To compile all source files with GHDL, the simulator executable is searched in PATH. The found default GHDL
executable can be overwritten by setting the environment variable GHDL or by passing the parameter –ghdl or
-GHDL to the scripts.

If the vendor library compilation is used very often, we recommend configuring these parameters in config.sh or
config.psm1, so the command line can be shortened to the essential parts.

28 Chapter 8. Precompile Vendor Primitives

GHDL Documentation, Release 1.0-dev

8.4 Compiling on Linux

• Step 0 - Configure the scripts (optional)

See the next section for how to configure config.sh.

• Step 1 - Browse to your simulation working directory

$ cd <MySimulationFolder>
```

• Step 2 - Start the compilation script(s)

$ /usr/local/lib/ghdl/vendors/compile-altera.sh --all
$ /usr/local/lib/ghdl/vendors/compile-lattice.sh --all
$ /usr/local/lib/ghdl/vendors/compile-xilinx-ise.sh --all
$ /usr/local/lib/ghdl/vendors/compile-xilinx-vivado.sh --all
$ /usr/local/lib/ghdl/vendors/compile-osvvm.sh --all
$ /usr/local/lib/ghdl/vendors/compile-uvvm.sh --all
```

In most cases GHDL is installed into `/usr/local/`. The scripts are
installed into the `lib` directory.

• Step 3 - Viewing the result

This creates vendor directories in your current working directory and compiles the vendor files
into them.

$ ls -ahl
...
drwxr-xr-x 2 <user> <group> 56K Mar 09 17:41 altera
drwxr-xr-x 2 <user> <group> 56K Mar 09 17:42 lattice
drwxr-xr-x 2 <user> <group> 56K Mar 09 17:48 osvvm
drwxr-xr-x 2 <user> <group> 56K Mar 09 17:58 uvvm
drwxr-xr-x 2 <user> <group> 56K Mar 09 17:58 xilinx-ise
drwxr-xr-x 2 <user> <group> 56K Mar 09 17:48 xilinx-vivado
```

8.5 Compiling on Windows

• Step 0 - Configure the scripts (optional)

See the next section for how to configure config.psm1.

• Step 1 - Browse to your simulation working directory

PS> cd <MySimulationFolder>

• Step 2 - Start the compilation script(s)

PS> <GHDL>\libraries\vendors\compile-altera.ps1 -All
PS> <GHDL>\libraries\vendors\compile-lattice.ps1 -All
PS> <GHDL>\libraries\vendors\compile-xilinx-ise.ps1 -All
PS> <GHDL>\libraries\vendors\compile-xilinx-vivado.ps1 -All
PS> <GHDL>\libraries\vendors\compile-osvvm.ps1 -All
PS> <GHDL>\libraries\vendors\compile-uvvm.ps1 -All

8.4. Compiling on Linux 29



GHDL Documentation, Release 1.0-dev

• Step 3 - Viewing the result

This creates vendor directories in your current working directory and compiles the vendor files
into them.

PS> dir
Directory: D:\temp\ghdl

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 09.03.2018 19:33 <DIR> altera
d---- 09.03.2018 19:38 <DIR> lattice
d---- 09.03.2018 19:38 <DIR> osvvm
d---- 09.03.2018 19:45 <DIR> uvvm
d---- 09.03.2018 19:06 <DIR> xilinx-ise
d---- 09.03.2018 19:40 <DIR> xilinx-vivado

8.6 Configuration Files

8.6.1 For Linux: config.sh

Please open the config.sh file and set the dictionary entries for the installed vendor tools to your tool’s installation
directories. Use an empty string “” for not installed tools.

config.sh:

declare -A InstallationDirectory
InstallationDirectory[AlteraQuartus]="/opt/Altera/17.1"
InstallationDirectory[LatticeDiamond]="/opt/Diamond/3.9_x64"
InstallationDirectory[OSVVM]="/home/<user>/git/GitHub/osvvm"
InstallationDirectory[UVVM]="/home/<user>/git/GitHub/uvvm_all"
InstallationDirectory[XilinxISE]="/opt/Xilinx/14.7"
InstallationDirectory[XilinxVivado]="/opt/Xilinx/Vivado/2017.4"

8.6.2 For Windows: config.psm1

Please open the config.psm1 file and set the dictionary entries for the installed vendor tools to your tool’s installa-
tion folder. Use an empty string “” for not installed tools.

config.psm1:

$InstallationDirectory = @{
"AlteraQuartus" = "C:\Altera\17.1";
"LatticeDiamond" = "C:\Lattice\Diamond\3.9_x64";
"XilinxISE" = "C:\Xilinx\14.7\ISE_DS";
"XilinxVivado" = "C:\Xilinx\Vivado\2017.4";
"OSVVM" = "D:\git\GitHub\osvvm";
"UVVM" = "D:\git\GitHub\uvvm_all"

}

8.6.3 Selectable Options for the Bash Scripts:

• Common parameters to most scripts:

30 Chapter 8. Precompile Vendor Primitives



GHDL Documentation, Release 1.0-dev

--help, -h Print the embedded help page(s).
--clean, -c Cleanup directory before analyzing.
--no-warnings, -n Don't show warnings. Report errors only.
--skip-existing, -s Skip already compiled files (an *.o file exists).
--skip-largefiles, -S Don't compile large entities like DSP and PCIe
→˓primitives.
--halt-on-error, -H Stop compiling if an error occurred.

• compile-altera.sh

Selectable libraries:

--all, -a Compile all libraries, including common libraries,
→˓packages and device libraries.
--altera Compile base libraries like 'altera' and 'altera_mf'
--max Compile device libraries for Max CPLDs
--arria Compile device libraries for Arria FPGAs
--cyclone Compile device libraries for Cyclone FPGAs
--stratix Compile device libraries for Stratix FPGAs

Compile options:

--vhdl93 Compile selected libraries with VHDL-93 (default).
--vhdl2008 Compile selected libraries with VHDL-2008.

• compile-xilinx-ise.sh

Selectable libraries:

--all, -a Compile all libraries, including common libraries,
→˓packages and device libraries.
--unisim Compile the unisim primitives
--unimacro Compile the unimacro macros
--simprim Compile the simprim primitives
--corelib Compile the xilinxcorelib macros
--secureip Compile the secureip primitives

Compile options:

--vhdl93 Compile selected libraries with VHDL-93 (default).
--vhdl2008 Compile selected libraries with VHDL-2008.

• compile-xilinx-vivado.sh

Selectable libraries:

--all, -a Compile all libraries, including common libraries,
→˓packages and device libraries.
--unisim Compile the unisim primitives
--unimacro Compile the unimacro macros
--secureip Compile the secureip primitives

Compile options:

--vhdl93 Compile selected libraries with VHDL-93 (default).
--vhdl2008 Compile selected libraries with VHDL-2008.

• compile-osvvm.sh

Selectable libraries:

--all, -a Compile all.
--osvvm Compile the OSVVM library.

8.6. Configuration Files 31



GHDL Documentation, Release 1.0-dev

• compile-uvvm.sh

Selectable libraries:

--all, -a Compile all.
--uvvm Compile the UVVM libraries.

8.6.4 Selectable Options for the PowerShell Scripts:

• Common parameters to all scripts:

-Help Print the embedded help page(s).
-Clean Cleanup directory before analyzing.
-SuppressWarnings Don't show warnings. Report errors only.

• compile-altera.ps1

Selectable libraries:

-All Compile all libraries, including common libraries,
→˓packages and device libraries.
-Altera Compile base libraries like 'altera' and 'altera_mf'
-Max Compile device libraries for Max CPLDs
-Arria Compile device libraries for Arria FPGAs
-Cyclone Compile device libraries for Cyclone FPGAs
-Stratix Compile device libraries for Stratix FPGAs

Compile options:

-VHDL93 Compile selected libraries with VHDL-93 (default).
-VHDL2008 Compile selected libraries with VHDL-2008.

• compile-xilinx-ise.ps1

Selectable libraries:

-All Compile all libraries, including common libraries,
→˓packages and device libraries.
-Unisim Compile the unisim primitives
-Unimacro Compile the unimacro macros
-Simprim Compile the simprim primitives
-CoreLib Compile the xilinxcorelib macros
-Secureip Compile the secureip primitives

Compile options:

-VHDL93 Compile selected libraries with VHDL-93 (default).
-VHDL2008 Compile selected libraries with VHDL-2008.

• compile-xilinx-vivado.ps1

Selectable libraries:

-All Compile all libraries, including common libraries,
→˓packages and device libraries.
-Unisim Compile the unisim primitives
-Unimacro Compile the unimacro macros
-Secureip Compile the secureip primitives

Compile options:

-VHDL93 Compile selected libraries with VHDL-93 (default).
-VHDL2008 Compile selected libraries with VHDL-2008.

32 Chapter 8. Precompile Vendor Primitives



GHDL Documentation, Release 1.0-dev

• compile-osvvm.ps1

Selectable libraries:

-All Compile all.
-OSVVM Compile the OSVVM library.

• compile-uvvm.ps1

Selectable libraries:

-All Compile all.
-UVVM Compile the UVVM libraries.

8.6. Configuration Files 33



GHDL Documentation, Release 1.0-dev

34 Chapter 8. Precompile Vendor Primitives



Part II

GHDL usage

35





CHAPTER 9

Quick Start Guide

Since this is the user and reference manual for GHDL, it does not contain an introduction to VHDL. Thus, the
reader should have at least a basic knowledge of VHDL. A good knowledge of VHDL language reference manual
(usually called LRM) is a plus. Nevertheless, multiple examples are provided, in the hope that they are useful for
users to learn about both GHDL and VHDL. For advanced examples using specific features see Examples.

As explained in What is GHDL?, GHDL is a compiler which translates VHDL files to machine code. Hence, the
regular workflow is composed of three steps:

• Analysis [-a]: convert design units (VHDL sources) to an internal representation.

• Elaboration [-e]: generate executable machine code for a target module (top-level entity).

• Run [-r]: execute the design to test the behaviour, generate output/waveforms, etc.

The following tips might be useful:

• Don’t forget to select the version of the VHDL standard you want to use (see VHDL standards). The default
is --std=93c. Use --std=08 for VHDL-2008 (albeit not fully implemented).

– Use --ieee=synopsys if your design depends on a non-standard implementation of the IEEE
library.

– Use -fexplicit and -frelaxed-rules if needed. For instance when relaxing VHDL 2008’s
need for shared variables to be protected types, you can use --std=08 -frelaxed-rules.

• Use --work=LIB_NAME to analyze files into the LIB_NAME library. To use files analyzed to a different
directory, give the path to the LIB_NAME library using -P/path/to/name/directory/.

• Use the same options for analysis and elaboration. E.g., first analyse with ghdl -a --std=08
--work=mylib myfile.vhdl; and then elaborate and run with ghdl --elab-run --std=08
top.

Due to the fact that VHDL is processed as a general purpose language (instead of an HDL), all the language
features are to be supported. I.e., VHDL sources do not need to be limited to the synthesisable subset. However,
distinction between synthesisable and non-synthesisable (simulation-only) subsets is often misleading for users
who are new to the language. Different examples are provided, in the hope of helping understand the different use
cases:

37



GHDL Documentation, Release 1.0-dev

9.1 Hello world program

To illustrate the general purpose of VHDL, the following block is a commented Hello world program which is
saved in a file named hello.vhdl:

-- Hello world program
use std.textio.all; -- Imports the standard textio package.

-- Defines a design entity, without any ports.
entity hello_world is
end hello_world;

architecture behaviour of hello_world is
begin

process
variable l : line;

begin
write (l, String'("Hello world!"));
writeline (output, l);
wait;

end process;
end behaviour;

Tip:

• Both .vhdl and .vhd extensions are used for VHDL source files, while .v is used for Verilog.

– Since, extension .vhd is also interpreted as a Virtual Hard Disk file format, some users prefer .
vhdl, to avoid ambiguity. This is the case with GHDL’s codebase. However, in order to maintain
backward-compatibility with legacy DOS systems, other users prefer .vhd.

• Unless you use especial characters, either UTF-8 or ISO-8859-1 encodings can be used. However, if you
do, the latter should be used. The standard defines ASCII (7-bit encoding) or ISO Latin-1 (ISO-8859-1) as
default. However, GHDL has a relaxing option, --mb-comments (multi byte), to allow UTF-8 or other
encodings in comments.

• First, you have to compile the file; this is called analysis of a design file in VHDL terms. Run ghdl -a
hello.vhdl in the shell. This command creates or updates a file work-obj93.cf, which describes
the library work.

• Then, run ghdl -e hello_world in the shell. Command -e means elaborate, which is used to build
a design, with the hello_world entity at the top of the hierarchy.

• Last, you can directly launch the simulation running ghdl -r hello_world in the shell. The result of
the simulation will be shown on screen:

Hello world!

Hint: If a GCC/LLVM variant of GHDL is used:

• Analysis generates a file, hello.o, which is the object file corresponding to your VHDL program. This
is not created with mcode. These kind of object files can be compiled into foreign programs (see Linking
GHDL to Ada/C).

• The elaboration step is mandatory after running the analysis and prior to launching the simulation. This
will generate an executable binary named hello_world.

• As a result, -r is just a passthrough to the binary generated in the elaboration. Therefore, the executable
can be run directly: ./hello_world. See -r for more informartion.

38 Chapter 9. Quick Start Guide

https://en.wikipedia.org/wiki/VHD_(file_format)
https://en.wikipedia.org/wiki/8.3_filename


GHDL Documentation, Release 1.0-dev

Hint: -e can be bypassed with mcode, since -r actually elaborates the design and saves it on memory before
running the simulation. But you can still use it to check for some elaboration problems.

9.2 Heartbeat module

Although Hello world illustrates that VHDL is supported as a general purpose language, the main use case of
GHDL is to simulate hardware descriptions. The following block, which is saved in a file named heartbeat.
vhdl, is an example of how to generate a 100 MHz clock signal with non-synthesisable VHDL:

library ieee;
use ieee.std_logic_1164.all;

entity heartbeat is
port ( clk: out std_logic);

end heartbeat;

architecture behaviour of heartbeat
is

constant clk_period : time := 10 ns;
begin

-- Clock process definition
clk_process: process
begin
clk <= '0';
wait for clk_period/2;
clk <= '1';
wait for clk_period/2;

end process;
end behaviour;

It can be analysed, elaborated and run, as you already know:

ghdl -a heartbeat.vhdl
ghdl -e heartbeat
ghdl -r heartbeat

However, execution of the design does not terminate. At the same time, no output is shown on screen. This is
because, traditionally, hardware designs are continuously running devices which do not have a screen where to
print. In this context, inspection and verification of the behaviour is done through waveforms, which is supported
by GHDL (see Export waveforms). You can use either --wave, --vcd, --vcdgz or --fst to save the signals
of the simulation to a file. Then, terminate the execution (C-c) and you can inspect the wave with a viewer,
such as GtkWave. As explained in the manual, GtkWave ‘relies on a post-mortem approach through the use of
dumpfiles’. Therefore, you should first simulate your design and dump a waveform file, say GHW:

ghdl -r heartbeat --wave=wave.ghw

Then, you can view the dump:

gtkwave wave.ghw

Of course, manually terminating the simulation is for illustration purposes only. In Full adder and Working with
non-trivial designs, you will see how to write a testbench to terminate the simulation programmatically.

9.2. Heartbeat module 39

https://en.wikipedia.org/wiki/Waveform_viewer
http://gtkwave.sourceforge.net/
http://gtkwave.sourceforge.net/gtkwave.pdf


GHDL Documentation, Release 1.0-dev

9.3 Full adder module and testbench

Unlike Heartbeat, the target hardware design in this example is written using the synthesisable subset of VHDL.
It is a full adder described in a file named adder.vhdl:

entity adder is
-- `i0`, `i1`, and the carry-in `ci` are inputs of the adder.
-- `s` is the sum output, `co` is the carry-out.
port (i0, i1 : in bit; ci : in bit; s : out bit; co : out bit);

end adder;

architecture rtl of adder is
begin

-- This full-adder architecture contains two concurrent assignments.
-- Compute the sum.
s <= i0 xor i1 xor ci;
-- Compute the carry.
co <= (i0 and i1) or (i0 and ci) or (i1 and ci);

end rtl;

You can analyse this design file, ghdl -a adder.vhdl, and try to execute the adder design. But this is
useless, since nothing externally visible will happen. In order to check this full adder, a testbench has to be run.
The testbench is a description of how to generate inputs and how to check the outputs of the Unit Under Test
(UUT). This one is very simple, since the adder is also simple: it checks exhaustively all inputs. Note that only the
behaviour is tested, timing constraints are not checked. A file named adder_tb.vhdl contains the testbench
for the adder:

-- A testbench has no ports.
entity adder_tb is
end adder_tb;

architecture behav of adder_tb is
-- Declaration of the component that will be instantiated.
component adder
port (i0, i1 : in bit; ci : in bit; s : out bit; co : out bit);

end component;

-- Specifies which entity is bound with the component.
for adder_0: adder use entity work.adder;
signal i0, i1, ci, s, co : bit;

begin
-- Component instantiation.
adder_0: adder port map (i0 => i0, i1 => i1, ci => ci, s => s, co => co);

-- This process does the real job.
process
type pattern_type is record

-- The inputs of the adder.
i0, i1, ci : bit;
-- The expected outputs of the adder.
s, co : bit;

end record;
-- The patterns to apply.
type pattern_array is array (natural range <>) of pattern_type;
constant patterns : pattern_array :=

(('0', '0', '0', '0', '0'),
('0', '0', '1', '1', '0'),
('0', '1', '0', '1', '0'),
('0', '1', '1', '0', '1'),
('1', '0', '0', '1', '0'),
('1', '0', '1', '0', '1'),

(continues on next page)

40 Chapter 9. Quick Start Guide

https://en.wikipedia.org/wiki/Adder_(electronics)#Full_adder


GHDL Documentation, Release 1.0-dev

(continued from previous page)

('1', '1', '0', '0', '1'),
('1', '1', '1', '1', '1'));

begin
-- Check each pattern.
for i in patterns'range loop

-- Set the inputs.
i0 <= patterns(i).i0;
i1 <= patterns(i).i1;
ci <= patterns(i).ci;
-- Wait for the results.
wait for 1 ns;
-- Check the outputs.
assert s = patterns(i).s
report "bad sum value" severity error;

assert co = patterns(i).co
report "bad carry out value" severity error;

end loop;
assert false report "end of test" severity note;
-- Wait forever; this will finish the simulation.
wait;

end process;

end behav;

As usual, you should analyze the file, ghdl -a adder_tb.vhdl.

Hint: Then, if required, elaborate the testbench: ghdl -e adder_tb. You do not need to specify which
object files are required, since GHDL knows them and automatically adds them.

Now, it is time to run the testbench, ghdl -r adder_tb, and check the result on screen:

adder_tb.vhdl:52:7:(assertion note): end of test

If your design is rather complex, you’d like to inspect signals as explained in Heartbeat.

See section Simulation options, for more details on other runtime options.

9.4 Working with non-trivial designs

Designs are usually more complex than the previous examples. Unless you are only studying VHDL, you
will work with larger designs. Let’s see how to analyse a design such as the DLX model suite written by
Peter Ashenden, which is distributed under the terms of the GNU General Public License. A copy is kept at
ghdl.free.fr/dlx.tar.gz .

• First, untar the sources: tar zxvf dlx.tar.gz.

Hint:

In order not to pollute the sources with the artifacts (WORK library), it is a good idea to create a
work/ subdirectory. To any GHDL commands, we will add the --workdir=work option, so that
all files generated by the compiler (except the executable) will be placed in this directory.

$ cd dlx
$ mkdir work

9.4. Working with non-trivial designs 41

http://ghdl.free.fr/dlx.tar.gz


GHDL Documentation, Release 1.0-dev

• Then, we will run the dlx_test_behaviour design. We need to analyse all the design units for the
design hierarchy, in the correct order. GHDL provides an easy way to do this, by importing the sources:
ghdl -i --workdir=work *.vhdl.

• GHDL knows all the design units of the DLX, but none of them has been analysed. Run the make command,
ghdl -m --workdir=work dlx_test_behaviour, which analyses and elaborates a design. This
creates many files in the work/ directory, and (GCC/LLVM only) the dlx_test_behaviour exe-
cutable in the current directory.

Hint: The simulation needs to have a DLX program contained in the file dlx.out. This memory image will be
loaded in the DLX memory. Just take one sample: cp test_loop.out dlx.out.

• Now, you can run the test suite: ghdl -r --workdir=work dlx_test_behaviour. The test
bench monitors the bus and displays each executed instruction. It finishes with an assertion of severity level
note:

dlx-behaviour.vhdl:395:11:(assertion note): TRAP instruction
encountered, execution halted

• Last, since the clock is still running, you have to manually stop the program with the C-c key sequence. This
behavior prevents you from running the testbench in batch mode. However, you may force the simulator
to stop when an assertion above or equal a certain severity level occurs. To do so, call run with this op-
tion instead: ghdl -r --workdir=work dlx_test_behaviour --assert-level=note`.
With --assert-level, the program stops just after the previous message:

dlx-behaviour.vhdl:395:11:(assertion note): TRAP instruction
encountered, execution halted
error: assertion failed

Tip: If you want to make room on your hard drive, you can either:

• Clean the design library with ghdl --clean --workdir=work. This removes the executable and all
the object files. If you want to rebuild the design at this point, just do the make command as shown above.

• Remove the design library with ghdl --remove --workdir=work. This removes the executable, all
the object files and the library file. If you want to rebuild the design, you have to import the sources again
and make the design.

• Remove the work/ directory: rm -rf work. Only the executable is kept. If you want to rebuild the
design, create the work/ directory, import the sources, and make the design.

Warning: Sometimes, a design does not fully follow the VHDL standards. For example it might use the badly
engineered std_logic_unsigned package. GHDL supports this VHDL dialect through some options:
--ieee=synopsys, -fexplicit, etc. See section IEEE library pitfalls, for more details.

42 Chapter 9. Quick Start Guide



CHAPTER 10

Invoking GHDL

The form of the ghdl command is ghdl command [options...]. There are multiple available commands,
but these general rules apply:

• The first argument selects the command. The options are used to slightly modify the action.

• No option is allowed before the command. Except for the run command, no option is allowed after a
filename or a unit name.

Hint: If the number of options is large and the command line length is beyond the system limit, you can use a
response file. An argument that starts with a @ is considered as a response file; it is replaced by arguments read
from the file (separated by blanks and end of line).

Hint: Only the most common commands and options are shown here. For the most advanced and experimental
features see section Additional Command Reference.

Warning: During analysis and elaboration GHDL may read the std and ieee files. The location of these
files is based on the prefix, which is (in order of priority):

• the --PREFIX command line option

• the GHDL_PREFIX environment variable

• a built-in default path. It is a hard-coded path on GNU/Linux, and it corresponds to the value
of the HKLM\Software\Ghdl\Install_Dir registry entry on Windows.

You should use the --disp-config command to display and debug installation problems.

10.1 Design building commands

The most commonly used commands of GHDL are those to analyze and elaborate a design.

43



GHDL Documentation, Release 1.0-dev

10.1.1 Analysis [-a]

-a <[options...] file...>

Analyzes/compiles one or more files, and creates an object file for each source file. Any argument starting with
a dash is an option, the others are filenames. No options are allowed after a filename argument. GHDL analyzes
each filename in the given order, and stops the analysis in case of error (remaining files are not analyzed).

See Options, for details on the GHDL options. For example, to produce debugging information such as line
numbers, use: ghdl -a -g my_design.vhdl.

10.1.2 Elaboration [-e]

-e <[options...] primary_unit [secondary_unit]>

Re-analyzes all the configurations, entities, architectures and package declarations, and creates the default config-
urations and the default binding indications according to the LRM rules. It also generates the list of object files
required for the executable. Then, it links all these files with the runtime library.

• The elaboration command, -e, must be followed by a name of either:

– a configuration unit

– an entity unit

– an entity unit followed by a name of an architecture unit

Name of the units must be a simple name, without any dot. You can select the name of the WORK library
with the --work=NAME option, as described in Options. See section Top entity, for the restrictions on the
root design of a hierarchy.

• If the GCC/LLVM backend was enabled during the compilation of GHDL, the elaboration command creates
an executable containing the code of the VHDL sources, the elaboration code and simulation code to execute
a design hierarchy. The executable is created in the current directory and the the filename is the name of
the primary unit, or for the latter case, the concatenation of the name of the primary unit, a dash, and the
name of the secondary unit (or architecture). Option -o followed by a filename can override the default
executable filename.

• If mcode is used, this command elaborates the design but does not generate anything. Since the run com-
mand also elaborates the design, this can be skipped.

Warning: This elaboration command is not a complete elaboration in terms of the VHDL standard.
The actual elaboration is performed at runtime. Therefore, in order to get a complete VHDL elaboration
without running the simulation, ghdl --elab-run --no-run is required. See --no-run.

10.1.3 Run [-r]

-r <[options...] primary_unit [secondary_unit] [simulation_options...]>

Runs/simulates a design. Two sets of options are accepted, both of them being separated by primary_unit
[secondary_unit]. For the first set, options..., arguments are the same as for the elaboration command.
For the second set, simulation_options..., arguments are defined in Simulation (runtime).

• GGC/LLVM: the filename of the executable is determined and it is executed. Elaboration options are ig-
nored. You may also directly execute the program. The executable must be in the current directory.

• mcode: the design is elaborated and the simulation is launched. As a consequence, you must use the same
options used during analysis.

This command exists for three reasons:

• You are using GCC/LLVM, but you don’t need to create the executable program name.

44 Chapter 10. Invoking GHDL



GHDL Documentation, Release 1.0-dev

• It is coherent with the -a and -e commands.

• It works with mcode implementation, where the executable code is generated in memory.

10.1.4 Elaborate and run [--elab-run]

--elab-run <[options...] primary_unit [secondary_unit] [simulation_options...]>

Acts like the elaboration command followed by the run command. Note that this command accepts two sets of
options. See -e, -r and Simulation (runtime).

10.1.5 Check syntax [-s]

-s <[options] files>

Analyze files but do not generate code. This command may be used to check the syntax of files. It does not update
the library.

10.1.6 Analyze and elaborate [-c]

-c <[options] file... -<e|r> primary_unit [secondary_unit]>

Hint: With GCC/LLVM, -e should be used, and -r with mcode.

The files are first parsed, and then a elaboration is performed, which drives an analysis. Effectively, analysis and
elaboration are combined, but there is no explicit call to -a. With GCC/LLVM, code is generated during the
elaboration. With mcode, the simulation is launched after the elaboration.

All the units of the files are put into the work library. But, the work library is neither read from disk nor saved.
Therefore, you must give all the files of the work library your design needs.

The advantages over the traditional approach (analyze and then elaborate) are:

• The compilation cycle is achieved in one command.

• Since the files are only parsed once, the compilation cycle may be faster.

• You don’t need to know an analysis order.

• This command produces a smaller executable, since unused units and subprograms do not generate code.

Hint: However, you should know that most of the time is spent in code generation and the analyze and elaborate
command generates code for all units needed, even units of std and ieee libraries. Therefore, according to the
design, the time for this command may be higher than the time for the analyze command followed by the elaborate
command.

Warning: This command is still under development. In case of problems, you should go back to the tradi-
tional way.

10.2 Design rebuilding commands

Analyzing and elaborating a design consisting of several files can be tricky, due to dependencies. GHDL has a
few commands to rebuild a design.

10.2. Design rebuilding commands 45



GHDL Documentation, Release 1.0-dev

10.2.1 Import [-i]

-i <[options] file...>

All the files specified in the command line are scanned, parsed and added into the libraries but as not yet analyzed.
No object files are created. Its purpose is to localize design units in the design files. The make command will then
be able to recursively build a hierarchy from an entity name or a configuration name.

Hint:

• Note that all the files are added to the work library. If you have many libraries, you must use the command
for each library.

• Since the files are parsed, there must be correct files. However, since they are not analyzed, many errors are
tolerated by this command.

See -m, to actually build the design.

10.2.2 Make [-m]

-m <[options] primary [secondary]>

Analyze automatically outdated files and elaborate a design. The primary unit denoted by the primary argument
must already be known by the system, either because you have already analyzed it (even if you have modified it)
or because you have imported it. A file may be outdated because it has been modified (e.g. you have just edited it),
or because a design unit contained in the file depends on a unit which is outdated. This rule is of course recursive.

• With option --bind, GHDL will stop before the final linking step. This is useful when the main entry
point is not GHDL and you’re linking GHDL object files into a foreign program.

• With option -f (force), GHDL analyzes all the units of the work library needed to create the design hier-
archy. Outdated units are recompiled. This is useful if you want to compile a design hierarchy with new
compilation flags (for example, to add the -g debugging option).

The make command will only re-analyze design units in the work library. GHDL fails if it has to analyze an
outdated unit from another library.

The purpose of this command is to be able to compile a design without prior knowledge of file order. In the VHDL
model, some units must be analyzed before others (e.g. an entity before its architecture). It might be a nightmare
to analyze a full design of several files if you don’t have the ordered list of files. This command computes an
analysis order.

The make command fails when a unit was not previously parsed. For example, if you split a file containing several
design units into several files, you must either import these new files or analyze them so that GHDL knows in
which file these units are.

The make command imports files which have been modified. Then, a design hierarchy is internally built as if no
units are outdated. Then, all outdated design units, using the dependencies of the design hierarchy, are analyzed.
If necessary, the design hierarchy is elaborated.

This is not perfect, since the default architecture (the most recently analyzed one) may change while outdated
design files are analyzed. In such a case, re-run the make command of GHDL.

10.2.3 Generate Makefile [--gen-makefile]

--gen-makefile <[options] primary [secondary]>

This command works like the make command (see -m), but only a makefile is generated on the standard output.

46 Chapter 10. Invoking GHDL



GHDL Documentation, Release 1.0-dev

10.2.4 Generate dependency file command [--gen-depends]

--gen-depends <[options] primary [secondary]>

Generate a Makefile containing only dependencies to build a design unit.

This command works like the make and gen-makefile commands (see -m), but instead of a full makefile only
dependencies without rules are generated on the standard output. Theses rules can then be integrated in another
Makefile.

10.3 Options

--work=<LIB_NAME>
Specify the name of the WORK library. Analyzed units are always placed in the library logically named
WORK. With this option, you can set its name. By default, the name is work.

GHDL checks whether WORK is a valid identifier. Although being more or less supported, the WORK identi-
fier should not be an extended identifier, since the filesystem may prevent it from working correctly (due to
case sensitivity or forbidden characters in filenames).

VHDL rules forbid you from adding units to the std library. Furthermore, you should not put units in the
ieee library.

--workdir=<DIR>
Specify the directory where the WORK library is located. When this option is not present, the WORK library
is in the current directory. The object files created by the compiler are always placed in the same directory
as the WORK library.

Use option -P to specify where libraries other than WORK are placed.

--std=<STANDARD>
Specify the standard to use. By default, the standard is 93c, which means VHDL-93 accepting VHDL-87
syntax. For details on STANDARD values see section VHDL standards.

-fsynopsys
Allow the use of synopsys non-standard packages (std_logic_arith, std_logic_signed,
std_logic_unsigned, std_logic_textio). These packages are present in the ieee library but
without this option it’s an error to use them.

The synopsys packages were created by some companies, and are popular. However they are not standard
packages, and have been placed in the IEEE library without the permission from the ieee.

--ieee=<IEEE_VAR>
Select the IEEE library to use. IEEE_VAR must be one of:

none Do not supply an IEEE library. Any library clause with the IEEE identifier will fail, unless you have
created your own library with the IEEE name.

standard Supply an IEEE library containing only packages defined by ieee standards. Currently, there
are the multivalue logic system package std_logic_1164 defined by IEEE 1164, the synthesis
packages numeric_bit and numeric_std defined by IEEE 1076.3, and the vital packages
vital_timing and vital_primitives, defined by IEEE 1076.4. The version of these pack-
ages is defined by the VHDL standard used. See section VITAL packages, for more details.

synopsys This option is now deprecated. It is equivalent to --ieee=standard and -fsynopsys.

To avoid errors, you must use the same IEEE library for all units of your design, and during elaboration.

-P<DIRECTORY>
Add DIRECTORY to the end of the list of directories to be searched for library files. A library is searched
in DIRECTORY and also in DIRECTORY/LIB/vVV (where LIB is the name of the library and VV the vhdl
standard).

10.3. Options 47



GHDL Documentation, Release 1.0-dev

The WORK library is always searched in the path specified by the --workdir option, or in the current
directory if the latter option is not specified.

-fexplicit
When two operators are overloaded, give preference to the explicit declaration. This may be used to avoid
the most common pitfall of the std_logic_arith package. See section IEEE library pitfalls, for an
example.

Warning: This option is not set by default. I don’t think this option is a good feature, because it breaks the
encapsulation rule. When set, an operator can be silently overridden in another package. You’d do better to fix
your design and use the numeric_std package.

-frelaxed

-frelaxed-rules
Within an object declaration, allow references to the name (which references the hidden declaration). This
ignores the error in the following code:

package pkg1 is
type state is (state1, state2, state3);

end pkg1;

use work.pkg1.all;
package pkg2 is
constant state1 : state := state1;

end pkg2;

Some code (such as Xilinx packages) have such constructs, which are valid.

(The scope of the state1 constant starts at the constant keyword. Because the constant state1 and the
enumeration literal state1 are homographs, the enumeration literal is hidden in the immediate scope of
the constant).

This option also relaxes the rules about pure functions. Violations result in warnings instead of errors.

-fpsl
Enable parsing of PSL assertions within comments. See section PSL support for more details.

--format=<FORMAT>
Define the output format of some options, such as --pp-html or --xref-html.

• By default or when --format=html2 is specified, generated files follow the HTML 2.0 standard,
and colours are specified with <FONT> tags. However, colours are hard-coded.

• If --format=css is specified, generated files follow the HTML 4.0 standard, and use the CSS-1
file ghdl.css to specify colours. This file is generated only if it does not already exist (it is never
overwritten) and can be customized by the user to change colours or appearance. Refer to a generated
file and its comments for more information.

--no-vital-checks

--vital-checks
Disable or enable checks of restriction on VITAL units. Checks are enabled by default.

Checks are performed only when a design unit is decorated by a VITAL attribute. The VITAL attributes are
VITAL_Level0 and VITAL_Level1, both declared in the ieee.VITAL_Timing package.

Currently, VITAL checks are only partially implemented. See section VHDL restrictions for VITAL for
more details.

--PREFIX=<PATH>
Use PATH as the prefix path to find commands and pre-installed (std and ieee) libraries.

48 Chapter 10. Invoking GHDL



GHDL Documentation, Release 1.0-dev

-v
Be verbose. For example, for analysis, elaboration and make commands, GHDL displays the commands
executed.

10.4 Warnings

Some constructions are not erroneous but dubious. Warnings are diagnostic messages that report such construc-
tions. Some warnings are reported only during analysis, others during elaboration.

Hint: You could disable a warning by using the --warn-no-XXX or -Wno-XXX instead of --warn-XXX or
-WXXX.

Hint: The warnings -Wbinding, -Wlibrary, -Wshared, -Wpure, -Wspecs, -Whide, -Wport are
enabled by default.

--warn-library
Warns if a design unit replaces another design unit with the same name.

--warn-default-binding
During analyze, warns if a component instantiation has neither configuration specification nor default bind-
ing. This may be useful if you want to detect during analyze possibly unbound components if you don’t use
configuration. See section VHDL standards for more details about default binding rules.

--warn-binding
During elaboration, warns if a component instantiation is not bound (and not explicitly left unbound). Also
warns if a port of an entity is not bound in a configuration specification or in a component configuration.
This warning is enabled by default, since default binding rules are somewhat complex and an unbound
component is most often unexpected.

However, warnings are still emitted if a component instantiation is inside a generate statement. As a conse-
quence, if you use the conditional generate statement to select a component according to the implementation,
you will certainly get warnings.

--warn-reserved
Emit a warning if an identifier is a reserved word in a later VHDL standard.

--warn-nested-comment
Emit a warning if a /* appears within a block comment (vhdl 2008).

--warn-parenthesis
Emit a warning in case of weird use of parentheses.

--warn-vital-generic
Warns if a generic name of a vital entity is not a vital generic name. This is set by default.

--warn-delayed-checks
Warns for checks that cannot be done during analysis time and are postponed to elaboration time. This is
because not all procedure bodies are available during analysis (either because a package body has not yet
been analysed or because GHDL doesn’t read not required package bodies).

These are checks for no wait statements in a procedure called in a sensitized process and checks for pure
rules of a function.

--warn-body
Emit a warning if a package body which is not required is analyzed. If a package does not declare a
subprogram or a deferred constant, the package does not require a body.

--warn-specs
Emit a warning if an all or others specification does not apply.

10.4. Warnings 49



GHDL Documentation, Release 1.0-dev

--warn-runtime-error
Emit a warning in case of runtime error that is detected during analysis.

--warn-shared
Emit a warning when a shared variable is declared and its type it not a protected type.

--warn-hide
Emit a warning when a declaration hides a previous hide.

--warn-unused
Emit a warning when a subprogram is never used.

--warn-others
Emit a warning is an others choice is not required because all the choices have been explicitly covered.

--warn-pure
Emit a warning when a pure rules is violated (like declaring a pure function with access parameters).

--warn-static
Emit a warning when a non-static expression is used at a place where the standard requires a static expres-
sion.

--warn-error
When this option is set, warnings are considered as errors.

10.5 Diagnostics Control

-fcolor-diagnostics

-fno-color-diagnostics
Control whether diagnostic messages are displayed in color. The default is on when the standard output is a
terminal.

-fdiagnostics-show-option

-fno-diagnostics-show-option
Control whether the warning option is displayed at the end of warning messages, so that the user can easily
know how to disable it.

-fcaret-diagnostics

-fno-caret-diagnostics
Control whether the source line of the error is displayed with a caret indicating the column of the error.

10.6 Library commands

A new library is created implicitly, by compiling entities (packages etc.) into it: ghdl -a
--work=my_custom_lib my_file.vhdl.

A library’s source code is usually stored and compiled into its own directory, that you specify with
the --workdir option: ghdl -a --work=my_custom_lib --workdir=my_custom_libdir
my_custom_lib_srcdir/my_file.vhdl. See also the -P command line option.

Furthermore, GHDL provides a few commands which act on a library:

10.6.1 Directory [--dir]

--dir <[options] [libs]>

Displays the content of the design libraries (by default the work library). All options are allowed, but only a few
are meaningful: --work, --workdir and --std.

50 Chapter 10. Invoking GHDL



GHDL Documentation, Release 1.0-dev

10.6.2 Clean [--clean]

--clean <[options]>

Try to remove any object, executable or temporary file it could have created. Source files are not removed. The
library is kept.

10.6.3 Remove [--remove]

--remove <[options]>

Acts like the clean command but removes the library too. Note that after removing a design library, the files are
not known anymore by GHDL.

10.6.4 Copy [--copy]

--copy <--work=name [options]>

Make a local copy of an existing library. This is very useful if you want to add units to the ieee library:

ghdl --copy --work=ieee --ieee=synopsys
ghdl -a --work=ieee numeric_unsigned.vhd

10.7 VPI build commands

These commands simplify the compile and the link of a user vpi module. They are all wrappers: the arguments
are in fact a whole command line that is executed with additional switches. Currently a unix-like compiler (like
cc, gcc or clang) is expected: the additional switches use their syntax. The only option is -v which displays the
command before its execution.

10.7.1 compile [--vpi-compile]

--vpi-compile <command>

Add an include path to the command and execute it:

ghdl --vpi-compile command

This will execute:

command -Ixxx/include

For example:

ghdl --vpi-compile gcc -c vpi1.c

executes:

gcc -c vpi1.c -fPIC -Ixxx/include

10.7.2 link [--vpi-link]

--vpi-link <command>

Add a library path and name to the command and execute it:

10.7. VPI build commands 51



GHDL Documentation, Release 1.0-dev

ghdl --vpi-link command

This will execute:

command -Lxxx/lib -lghdlvpi

For example:

ghdl --vpi-link gcc -o vpi1.vpi vpi1.o

executes:

gcc -o vpi1.vpi vpi1.o --shared -Lxxx/lib -lghdlvpi

10.7.3 cflags [--vpi-cflags]

--vpi-cflags

Display flags added by --vpi-compile.

10.7.4 ldflags [--vpi-ldflags]

--vpi-ldflags

Display flags added by --vpi-link.

10.7.5 include dir [--vpi-include-dir]

--vpi-include-dir

Display the include directory added by the compile flags.

10.7.6 library dir [--vpi-library-dir]

--vpi-library-dir

Display the library directory added by the link flags.

10.8 IEEE library pitfalls

When you use options --ieee=synopsys, the ieee library contains non standard packages such as
std_logic_arith. These packages are not standard because there are not described by an IEEE standard,
even if they have been put in the IEEE library. Furthermore, they are not really de-facto standard, because there
are slight differences between the packages of Mentor and those of Synopsys. Furthermore, since they are not
well thought out, their use has pitfalls. For example, this description has an error during compilation:

library ieee;
use ieee.std_logic_1164.all;

-- A counter from 0 to 10.
entity counter is

port (val : out std_logic_vector (3 downto 0);
ck : std_logic;
rst : std_logic);

end counter;
(continues on next page)

52 Chapter 10. Invoking GHDL



GHDL Documentation, Release 1.0-dev

(continued from previous page)

library ieee;
use ieee.std_logic_unsigned.all;

architecture bad of counter
is

signal v : std_logic_vector (3 downto 0);
begin

process (ck, rst)
begin
if rst = '1' then

v <= x"0";
elsif rising_edge (ck) then
if v = "1010" then -- Error
v <= x"0";

else
v <= v + 1;

end if;
end if;

end process;

val <= v;
end bad;

When you analyze this design, GHDL does not accept it (two long lines have been split for readability):

ghdl -a --ieee=synopsys bad_counter.vhdl
bad_counter.vhdl:13:14: operator "=" is overloaded
bad_counter.vhdl:13:14: possible interpretations are:
../../libraries/ieee/std_logic_1164.v93:69:5: implicit function "="

[std_logic_vector, std_logic_vector return boolean]
../../libraries/synopsys/std_logic_unsigned.vhdl:64:5: function "="

[std_logic_vector, std_logic_vector return boolean]
../translate/ghdldrv/ghdl: compilation error

Indeed, the “=” operator is defined in both packages, and both are visible at the place it is used. The first decla-
ration is an implicit one, which occurs when the std_logic_vector type is declared and is an element to element
comparison. The second one is an explicit declared function, with the semantics of an unsigned comparison.

With some analysers, the explicit declaration has priority over the implicit declaration, and this design can be
analyzed without error. However, this is not the rule given by the VHDL LRM, and since GHDL follows these
rules, it emits an error.

You can force GHDL to use this rule with the -fexplicit option (see Options for further details). However it is easy
to fix this error, by using a selected name:

library ieee;
use ieee.std_logic_unsigned.all;

architecture fixed_bad of counter
is

signal v : std_logic_vector (3 downto 0);
begin

process (ck, rst)
begin
if rst = '1' then

v <= x"0";
elsif rising_edge (ck) then
if ieee.std_logic_unsigned."=" (v, "1010") then

v <= x"0";
else

(continues on next page)

10.8. IEEE library pitfalls 53



GHDL Documentation, Release 1.0-dev

(continued from previous page)

v <= v + 1;
end if;

end if;
end process;

val <= v;
end fixed_bad;

It is better to only use the standard packages defined by IEEE, which provide the same functionalities:

library ieee;
use ieee.numeric_std.all;

architecture good of counter
is

signal v : unsigned (3 downto 0);
begin

process (ck, rst)
begin
if rst = '1' then

v <= x"0";
elsif rising_edge (ck) then

if v = "1010" then
v <= x"0";

else
v <= v + 1;

end if;
end if;

end process;

val <= std_logic_vector (v);
end good;

Hint: The ieee math packages (math_real and math_complex) provided with GHDL are fully compliant
with the IEEE standard.

54 Chapter 10. Invoking GHDL



CHAPTER 11

Simulation (runtime)

11.1 Simulation options

In most system environments, it is possible to pass CLI options while invoking a program. Contrary to most
programming languages, there is no standard method in VHDL to obtain the arguments or to set the exit status.
However, the GHDL runtime behaviour can be modified with some options:

• It is possible to pass parameters to your design through the generic interfaces of the top entity.

• It is also possible to stop simulation after a certain time. The exit status of the simulation is
EXIT_SUCCESS (0) if the simulation completes, or EXIT_FAILURE (1) in case of error (assertion fail-
ure, overflow or any constraint error).

Here is the list of the most useful options. For further info, see Debugging.

Hint: Note that these arguments are represented as simulation_options... in this documentation. For
analysis/elaboration options, see Invoking GHDL.

-gGENERIC=VALUE
Set value VALUE to generic with name GENERIC.

Example:

$ ghdl -r --std=08 my_unit -gDEPTH=12

Note: This is currently a run option; but in the (not near) future it might be deprecated to become an
elaboration option only. As a result, now you can generate a single binary and execute it multiple times with
different arguments. That might not be possible in the future.

As explained in -e, performing a complete elaboration in terms of the LRM requires to get rid of the
compile and link model. This is mostly because delaying certain elaboration steps to the runtime prevents
elaboration-time optimisions.

Hint: Currently, GHDL has limited support for generic types in the CLI. It is suggested to use strings or
integers. Nonetheless, project JSON-for-VHDL allows to encode a set of parameters as stringified JSON,

55

https://github.com/Paebbels/JSON-for-VHDL


GHDL Documentation, Release 1.0-dev

and it provides VHDL functions to read specific values from it. It is valid for synthesis.

--assert-level=<LEVEL>
Select the assertion level at which an assertion violation stops the simulation. LEVEL is the name from the
severity_level enumerated type defined in the standard package or the none name.

By default, only assertion violation of severity level failure stops the simulation.

For example, if LEVEL was warning, any assertion violation with severity level warning, error or
failure would stop simulation, but the assertion violation at the note severity level would only display
a message.

Option --assert-level=none prevents any assertion violation from stopping simulation.

--ieee-asserts=<POLICY>
Select how the assertions from ieee units are handled. POLICY can be enable (the default), disable
which disables all assertions from ieee packages and disable-at-0 which disables only at the start of
simulation.

This option can be useful to avoid assertion messages from ieee.numeric_std (and other ieee pack-
ages).

--stop-time=<TIME>
Stop the simulation after TIME. TIME is expressed as a time value, without any space. The time is the
simulation time, not the real clock time.

For example:

$ ./my_design --stop-time=10ns
$ ./my_design --stop-time=ps

--stop-delta=<N>
Stop the simulation after N delta cycles in the same current time. The default is 5000.

--disp-time
Display the time and delta cycle number as simulation advances.

--unbuffered
Disable buffering on stdout, stderr and files opened in write or append mode (TEXTIO).

--max-stack-alloc=<N>
Emit an error message in case of allocation on the stack of an object larger than N KB. Use 0 to disable
these checks.

--sdf=<PATH=FILENAME>
Do VITAL annotation on PATH with SDF file FILENAME.

PATH is a path of instances, separated with . or /. Any separator can be used. Instances are component
instantiation labels, generate labels or block labels. Currently, you cannot use an indexed name.

Specifying a delay:

--sdf=min=PATH=FILENAME
--sdf=typ=PATH=FILENAME
--sdf=max=PATH=FILENAME

If the option contains a type of delay, that is min=, typ= or max=, the annotator use respectively minimum,
typical or maximum values. If the option does not contain a type of delay, the annotator uses the typical
delay.

See section Backannotation, for more details.

--vpi=<FILENAME>
Load VPI module.

56 Chapter 11. Simulation (runtime)



GHDL Documentation, Release 1.0-dev

--vpi-trace=<FILE>
Trace vpi calls to FILE.

--help
Display a short description of the options accepted by the runtime library.

--no-run
Stop the simulation before the first cycle. This option actually elaborates the design, so it will catch any
bound error in port maps. See also -e.

This may be used with --disp-tree to display the tree without simulating the whole design.

11.2 Export waveforms

--read-wave-opt=<FILENAME>
Filter signals to be dumped to the wave file according to the wave option file provided.

Here is a description of the wave option file format currently supported

$ version = 1.1 # Optional

# Path format for signals in packages :
my_pkg.global_signal_a

# Path format for signals in entities :
/top/sub/clk

# Dump every signal named reset in first level sub entities of top
/top/*/reset

# Dump every signal named reset in recursive sub entities of top
/top/**/reset

# Dump every signal of sub2 which could be anywhere in the design except
# on the top level
/**/sub2/*

# Dump every signal of sub3 which must be a first level sub entity of the
# top level
/*/sub3/*

# Dump every signal of the first level sub entities of sub3 (but not
# those of sub3)
/**/sub3/*/*

--write-wave-opt=<FILENAME>
If the wave option file doesn’t exist, creates it with all the signals of the design. Otherwise throws an error,
because it won’t erase an existing file.

--vcd=<FILENAME>

--vcdgz=<FILENAME>
Option --vcd dumps into the VCD file FILENAME the signal values before each non-delta cycle. If
FILENAME is -, then the standard output is used, otherwise a file is created or overwritten.

The --vcdgz option is the same as the --vcd option, but the output is compressed using the zlib (gzip
compression). However, you can’t use the - filename. Furthermore, only one VCD file can be written.

VCD (value change dump) is a file format defined by the verilog standard and used by virtually any wave
viewer.

Since it comes from verilog, only a few VHDL types can be dumped. GHDL dumps only signals whose
base type is of the following:

11.2. Export waveforms 57



GHDL Documentation, Release 1.0-dev

• types defined in the std.standard package:

– bit

– bit_vector

• types defined in the ieee.std_logic_1164 package:

– std_ulogic

– std_logic (because it is a subtype of std_ulogic)

– std_ulogic_vector

– std_logic_vector

• any integer type

I have successfully used gtkwave to view VCD files.

Currently, there is no way to select signals to be dumped: all signals are dumped, which can generate big
files.

It is very unfortunate there is no standard or well-known wave file format supporting VHDL types. If you
are aware of such a free format, please mail me (Reporting bugs).

--vcd-nodate
Do not write date in the VCD file.

--fst=<FILENAME>
Write the waveforms into an fst file that can be displayed by gtkwave. The fst files are much smaller than
VCD or GHW files, but it handles only the same signals as the VCD format.

--wave=<FILENAME>
Write the waveforms into a ghw (GHdl Waveform) file. Currently, all the signals are dumped into the
waveform file, you cannot select a hierarchy of signals to be dumped.

The format of this file was defined by myself and is not yet completely fixed. It may change slightly. The
gtkwave tool can read the GHW files.

Contrary to VCD files, any VHDL type can be dumped into a GHW file.

11.3 Export hierarchy and references

--disp-tree=<KIND>
Display the design hierarchy as a tree of instantiated design entities. This may be useful to understand the
structure of a complex design. KIND is optional, but if set must be one of:

• none Do not display hierarchy. Same as if the option was not present.

• inst Display entities, architectures, instances, blocks and generates statements.

• proc Like inst but also display processes.

• port Like proc but display ports and signals too. If KIND is not specified, the hierarchy is displayed
with the port mode.

--xref-html [options] files...
To easily navigate through your sources, you may generate cross-references. This command generates an
html file for each file given in the command line, with syntax highlighting and full cross-reference: every
identifier is a link to its declaration. An index of the files is created too.

The set of files are analyzed, and then, if the analysis is successful, html files are generated in the
directory specified by the -o <DIR> option, or html/ directory by default. The style of the html file can
be modified with the --format option.

58 Chapter 11. Simulation (runtime)



GHDL Documentation, Release 1.0-dev

--psl-report=<FILENAME>
Write a report for PSL at the end of simulation. For each PSL cover and assert statements, the name, source
location and whether it passed or failed is reported. The file is written using the JSON format, but is still
human readable.

--file-to-xml
Outputs an XML representation of the decorated syntax tree for the input file and its dependencies. It
can be used for VHDL tooling using semantic information, like style checkers, documentation extraction,
complexity estimation, etc.

Warning:

• The AST slightly changes from time to time (particularly when new nodes are added for new language
features), so be liberal in what is allowed by your tool. Also, the XML can be quite large so consider it
only during prototyping.

• Note that at this time there is no XML dump of the elaborated design.

11.3. Export hierarchy and references 59



GHDL Documentation, Release 1.0-dev

60 Chapter 11. Simulation (runtime)



CHAPTER 12

Synthesis

Warning: This is experimental and work in progress! If you find crashes or unsupported features, please
report them!

Since v0.37, GHDL features a built-in (experimental) synthesis kernel with two backends: synth and
yosys-plugin. Currently, synthesis is supported as a front-end of other synthesis and technology mapping
tools. Hence, the netlists generated by GHDL are not optimised.

Note: Due to GHDL’s modular architecture (see Overview), the synthesis kernel shares the VHDL parsing front-
end with the simulation back-ends. Hence, available options for synthesis are the same as for analysis and/or
simulation elaboration (see Options).

12.1 Synthesis [--synth]

Hint: This command is useful for checking that a design can be synthesized, before actually running a complete
synthesis tool. In fact, because this is expected to be much faster, it can be used as a frequent check.

Tip: Since GHDL’s front-end supports multiple versions of the standard, but the synthesised netlists are generated
using a subset of VHDL 1993, GHDL’s synthesis features can be used as a preprocessor with tools that do support
older versions of the standard, but which don’t provide the most recent features.

--synth <[options] primary_unit [secondary_unit]>

Elaborates for synthesis the design whose top unit is indicated by primary_unit [secondary_unit].

Attention: All the units must have been analyzed; that is, the artifacts of previously executed -a calls must
exist.

--synth <[options] files... -e primary_unit [secondary_unit]>

61



GHDL Documentation, Release 1.0-dev

Analyses and elaborates for synthesis the files present on the command line only. Elaboration starts from the top
unit indicated by primary_unit [secondary_unit].

Currently, the output is a generic netlist using a (very simple) subset of VHDL 1993. See #1174 for on-going
discussion about other output formats.

Tip: Files can be provided in any order.

12.2 Yosys plugin

ghdl-yosys-plugin is a module to use GHDL as a VHDL front-end for Yosys Open Synthesis Suite, a framework
for optimised synthesis and technology mapping. Artifacts generated by Yosys can be used in multiple open
source and vendor tools to achieve P&R, formal verification, etc. A relevant feature of combining GHDL and
Yosys is that mixed-language (VHDL-Verilog) synthesis with open source tools is possible.

The command line syntax for this plugin is the same as for :option:--synth, except that the command name
(--synth) is neither required nor supported. Instead, yosys, yosys -m ghdl or yosys -m path/to/
ghdl.so need to be used, depending of how is the plugin built. See README for building and installation
guidelines.

Hint: ghdl-yosys-plugin is a thin layer that converts the internal representation of --synth to Yosys’ C API.
Hence, it is suggested to check the designs with --synth before running synthesis with Yosys.

62 Chapter 12. Synthesis

https://github.com/ghdl/ghdl/issues/1174
https://github.com/ghdl/ghdl-yosys-plugin
http://www.clifford.at/yosys/
https://github.com/ghdl/ghdl-yosys-plugin


CHAPTER 13

Additional Command Reference

Hint: The most common commands and options are shown in section Invoking GHDL. Here the advanced and
experimental features are described.

13.1 Environment variables

GHDL_PREFIX

13.2 Misc commands

There are a few GHDL commands which are seldom useful.

13.2.1 Help [-h]

--help, -h

Display (on the standard output) a short description of the all the commands available. If the help switch is
followed by a command switch, then options for that second command are displayed:

ghdl --help
ghdl -h
ghdl -h command

13.2.2 Display config [--disp-config]

--disp-config <[options]>

Display the program paths and options used by GHDL. This may be useful to track installation errors.

63



GHDL Documentation, Release 1.0-dev

13.2.3 Display standard [--disp-standard]

--disp-standard <[options]>

Display the std.standard package.

13.2.4 Version [--version]

--version, -v

Display the GHDL version.

13.3 File commands

The following commands act on one or several files. These are not analyzed, therefore, they work even if a file
has semantic errors.

13.3.1 Pretty print [--pp-html]

--pp-html <[options] file...>

The files are just scanned and an html file with syntax highlighting is generated on standard output. Since the files
are not even parsed, erroneous files or incomplete designs can be pretty printed. The style of the html file can be
modified with the --format option.

13.3.2 Find [-f]

-f <file...>

The files are scanned, parsed and the names of design units are displayed. Design units marked with two stars are
candidates to be at the apex of a design hierarchy.

13.3.3 Chop [--chop]

--chop <files...>

The provided files are read, and a file is written in the current directory for every design unit. Each filename is
built according to the type:

• For an entity declaration, a package declaration, or a configuration the file name is NAME.vhdl, where
NAME is the name of the design unit.

• For a package body, the filename is NAME-body.vhdl.

• Finally, for an architecture ARCH of an entity ENTITY, the filename is ENTITY-ARCH.vhdl.

Since the input files are parsed, this command aborts in case of syntax error. The command aborts too if a file to
be written already exists.

Comments between design units are stored into the most adequate files.

This command may be useful to split big files, if your computer doesn’t have enough memory to compile such
files. The size of the executable is reduced too.

64 Chapter 13. Additional Command Reference



GHDL Documentation, Release 1.0-dev

13.3.4 Lines [--lines]

--lines <files...>

Display on the standard output lines of files preceded by line number.

13.4 GCC/LLVM only commands

13.4.1 Bind [--bind]

--bind <[options] primary_unit [secondary_unit]>

Performs only the first stage of the elaboration command; the list of object files is created but the executable is not
built. This command should be used only when the main entry point is not GHDL.

Hint: Currently, the objects generated by --bind are created in the working directory. This behaviour is differ-
ent from other object files generated with -a, which are always placed in the same directory as the WORK library.
It is possible to provide an output path with ghdl --bind -o path/primary_unit primary_unit.
However, ghdl --list-link will only search in the current path.

13.4.2 Link [--link]

--link <[options] primary_unit [secondary_unit]>

Performs only the second stage of the elaboration command: the executable is created by linking the files of the
object files list. This command is available only for completeness. The elaboration command is equivalent to the
bind command followed by the link command.

13.4.3 List link [--list-link]

--list-link <primary_unit [secondary_unit]>

This command may be used only after a bind command. GHDL displays all the files which will be linked to create
an executable and additional arguments for the linker. This command is intended to add object files in a link of
a foreign program. This command should be used only after ghdl --bind, as some files generated by it are
looked for in the current path.

Hint: One of the arguments returned by --list-link is -Wl,--version-script=PREFIX/lib/
ghdl/grt.ver, where PREFIX is the installation path of GHDL. This will hide most of the symbols when the
target executable binary is built. In some contexts, where the binary is to be loaded dynamically, the user might
want additional symbols to be accessible. There are two possible approaches to have it done:

• Filter the output of --list-link with e.g. sed.

• Provide an additional non-anonymous version script: -Wl,-Wl,--version-script=file.ver.

13.5 Options

--mb-comments, -C

Allow multi-bytes chars in a comment.

--syn-binding

13.4. GCC/LLVM only commands 65



GHDL Documentation, Release 1.0-dev

Use synthesizer rules for component binding. During elaboration, if a component is not bound to an entity using
VHDL LRM rules, try to find in any known library an entity whose name is the same as the component name.

This rule is known as the synthesizer rule.

There are two key points: normal VHDL LRM rules are tried first and entities are searched only in known libraries.
A known library is a library which has been named in your design.

This option is only useful during elaboration.

--GHDL1<=COMMAND>

Use COMMAND as the command name for the compiler. If COMMAND is not a path, then it is searched in the path.

--AS<=COMMAND>

Use COMMAND as the command name for the assembler. If COMMAND is not a path, then it is searched in the path.
The default is as.

--LINK<=COMMAND>

Use COMMAND as the linker driver. If COMMAND is not a path, then it is searched in the path. The default is gcc.

13.6 Passing options to other programs

Warning: These options are only available with GCC/LLVM.

For many commands, GHDL acts as a driver: it invokes programs to perform the command. You can pass arbitrary
options to these programs.

Both the compiler and the linker are in fact GCC programs. See the GCC manual for details on GCC options.

-Wc,<OPTION>

Pass OPTION as an option to the compiler.

-Wa,<OPTION>

Pass OPTION as an option to the assembler.

-Wl,<OPTION>

Pass OPTION as an option to the linker.

66 Chapter 13. Additional Command Reference



CHAPTER 14

Interfacing to other languages

Interfacing with foreign languages through VHPIDIRECT is possible on any platform. You can define a subpro-
gram in a foreign language (such as C or Ada) and import it into a VHDL design.

Hint: VHPIDIRECT is the simplest way to call C code from VHDL. VHPI is a complex API to interface C and
VHDL, which allows to inspect the hierarchy, set callbacks and/or assign signals. GHDL does not support VHPI.
For these kind of features, it is suggested to use VPI instead (see VPI build commands).

Attention: As a consequence of the runtime copyright, you are not allowed to distribute an executable
produced by GHDL without allowing access to the VHDL sources. See Copyrights | Licenses.

14.1 Foreign declarations

Only subprograms (functions or procedures) can be imported, using the foreign attribute. In this example, the sin
function is imported:

package math is
function sin (v : real) return real;
attribute foreign of sin : function is "VHPIDIRECT sin";

end math;

package body math is
function sin (v : real) return real is
begin
assert false severity failure;

end sin;
end math;

A subprogram is made foreign if the foreign attribute decorates it. This attribute is declared in the 1993 revision
of the std.standard package. Therefore, you cannot use this feature in VHDL 1987.

The decoration is achieved through an attribute specification. The attribute specification must be in the same
declarative part as the subprogram and must be after it. This is a general rule for specifications. The value of the
specification must be a locally static string.

67



GHDL Documentation, Release 1.0-dev

Even when a subprogram is foreign, its body must be present. However, since it won’t be called, you can make it
empty or simply put an assertion.

The value of the attribute must start with VHPIDIRECT (an upper-case keyword followed by one or more blanks).
The linkage name of the subprogram follows.

The object file with the source code for the foreign subprogram must then be linked to GHDL, expanded upon in
Wrapping and starting a GHDL simulation from a foreign program.

14.1.1 Restrictions on foreign declarations

Any subprogram can be imported. GHDL puts no restrictions on foreign subprograms. However, the represen-
tation of a type or of an interface in a foreign language may be obscure. Most non-composite types are easily
imported:

integer types They are represented by a 32 bit word. This generally corresponds to int for C or Integer for Ada.

physical types They are represented by a 64 bit word. This generally corresponds to the long long for C or
Long_Long_Integer for Ada.

floating point types They are represented by a 64 bit floating point word. This generally corresponds to double
for C or Long_Float for Ada.

enumeration types They are represented by an 8 bit word, or, if the number of literals is greater than 256, by a 32
bit word. There is no corresponding C type, since arguments are not promoted.

Non-composite types are passed by value. For the in mode, this corresponds to the C or Ada mechanism. The
out and inout interfaces of non-composite types are gathered in a record and this record is passed by reference
as the first argument to the subprogram. As a consequence, you shouldn’t use in and inout modes in foreign
subprograms, since they are not portable.

Records are represented like a C structure and are passed by reference to subprograms.

Arrays with static bounds are represented like a C array, whose length is the number of elements, and are passed
by reference to subprograms.

Unconstrained arrays are represented by a fat pointer. Do not use unconstrained arrays in foreign subprograms.

Accesses to an unconstrained array are fat pointers. Other accesses correspond to an address and are passed to a
subprogram like other non-composite types.

Files are represented by a 32 bit word, which corresponds to an index in a table.

14.2 Linking foreign object files to GHDL

You may add additional files or options during the link of GHDL using -Wl, as described in Passing options to
other programs. For example:

ghdl -e -Wl,-lm math_tb

will create the math_tb executable with the lm (mathematical) library.

Note the c library is always linked with an executable.

Hint: The process for personal code is the same, provided the code is compiled to an object file. Analysis must
be made of the HDL files, then elaboration with -e -Wl,personal.o [options...] primary_unit
[secondary_unit] as arguments. Additional object files are flagged separate -Wl,* arguments. The elabo-
ration step will compile the executable with the custom resources. Further reading (particularly about the backend
particularities) is at Elaboration [-e] and Run [-r].

68 Chapter 14. Interfacing to other languages



GHDL Documentation, Release 1.0-dev

14.3 Wrapping and starting a GHDL simulation from a foreign pro-
gram

You may run your design from an external program. You just have to call the ghdl_main function which can be
defined:

in C:

extern int ghdl_main (int argc, char **argv);

in Ada:

with System;
...
function Ghdl_Main (Argc : Integer; Argv : System.Address)

return Integer;
pragma import (C, Ghdl_Main, "ghdl_main");

Tip: Don’t forget to list the object file(s) of this entry point and other foreign sources, as per Linking foreign
object files to GHDL.

Attention: This function must be called once, since reseting/restarting the simulation runtime is not supported
yet (see #1184).

Hint: Immitating the run time flags, such as -gDEPTH=12 from -gGENERIC, requires the argv to have the
executable’s path at index 0, effectively shifting all other indicies along by 1. This can be taken from the 0 index
of the argv passed to main(), or (not suggested, despite a lack of consequences) left empty/null.

Since ghdl_main is the entrypoint to the design (GRT runtime), the supported CLI options are the ones shown
in Simulation (runtime). Options for analysis/elaboration are not required and will NOT work. See -r.

14.4 Linking GHDL to Ada/C

As explained previously in Wrapping and starting a GHDL simulation from a foreign program, you can start
a simulation from an Ada or C program. However the build process is not trivial: you have to elaborate your
program and your VHDL design.

Hint: If the foreign language is C, this procedure is equivalent to the one described in Linking foreign object files
to GHDL, which is easier. Thus, this procedure is explained for didactic purposes. When suitable, we suggest to
use -e, instead of --bind and --list-link.

First, you have to analyze all your design files. In this example, we suppose there is only one design file, design.
vhdl.

$ ghdl -a design.vhdl

Then, bind your design. In this example, we suppose the entity at the design apex is design.

$ ghdl --bind design

14.3. Wrapping and starting a GHDL simulation from a foreign program 69

https://github.com/ghdl/ghdl/issues/1184


GHDL Documentation, Release 1.0-dev

Finally, compile/bind your program and link it with your VHDL design:

in C:

gcc my_prog.c -Wl,`ghdl --list-link design`

in Ada:

$ gnatmake my_prog -largs `ghdl --list-link design`

See GCC/LLVM only commands for further details about --bind and --list-link.

14.5 Dynamically loading foreign objects from within GHDL

Instead of linking and building foreign objects along with GHDL, it is also possible to load foreign resources
dynamically. In order to do so, provide the path and name of the shared library where the resource is to be loaded
from. For example:

attribute foreign of get_rand: function is "VHPIDIRECT ./getrand.so get_rand";

14.6 Dynamically loading GHDL

In order to generate a position independent executable (PIE), be it an executable binary or a shared library, GHDL
must be built with config option --default-pic. This will ensure that all the libraries and sources analyzed
by GHDL generate position independent code (PIC). Furthermore, when the binary is built, argument -Wl,-pie
needs to be provided.

PIE binaries can be loaded and executed from any language that supports C-alike signatures and types (C, C++,
golang, Python, Rust, etc.). For example, in Python:

import ctypes
gbin = ctypes.CDLL(bin_path)

args = ['-gGENA="value"', 'gGENB="value"']

xargs = (ctypes.POINTER(ctypes.c_char) * (len(args) + 1))()
for i, arg in enumerate(args):

xargs[i] = ctypes.create_string_buffer(arg.encode('utf-8'))
return args[0], xargs

gbin.main(len(xargv)-1, xargv)

import _ctypes
# On GNU/Linux
_ctypes.dlclose(gbin._handle)
# On Windows
#_ctypes.FreeLibrary(gbin._handle)

This allows seamless co-simulation using concurrent/parallel execution features available in each language:
pthreads, goroutines/gochannels, multiprocessing/queues, etc. Moreover, it provides a mechanism to execute
multiple GHDL simulations in parallel.

Tip: As explained in Wrapping and starting a GHDL simulation from a foreign program, ghdl_main must be
called once, since reseting/restarting the simulation runtime is not supported yet (see #1184). When it is loaded
dynamically, this means that the binary file/library needs to be unloaded from memory and loaded again.

70 Chapter 14. Interfacing to other languages

https://github.com/ghdl/ghdl/issues/1184


GHDL Documentation, Release 1.0-dev

Attention: By default, GHDL uses grt.ver to limit which symbols are exposed in the generated binary,
and ghdl_main is not included. Hence, the version script needs to be removed, or a complementary script
needs to be provided. Otherwise, it will not be possible to find the function easily. See --list-link for
further info.

14.7 Using GRT from Ada

Warning: This topic is only for advanced users who know how to use Ada and GNAT. This is provided only
for reference; we have tested this once before releasing GHDL 0.19, but this is not checked at each release.

The simulator kernel of GHDL named GRT is written in Ada95 and contains a very light and slightly adapted
version of VHPI. Since it is an Ada implementation it is called AVHPI. Although being tough, you may interface
to AVHPI.

For using AVHPI, you need the sources of GHDL and to recompile them (at least the GRT library). This library is
usually compiled with a No_Run_Time pragma, so that the user does not need to install the GNAT runtime library.
However, you certainly want to use the usual runtime library and want to avoid this pragma. For this, reset the
GRT_PRAGMA_FLAG variable.

$ make GRT_PRAGMA_FLAG= grt-all

Since GRT is a self-contained library, you don’t want gnatlink to fetch individual object files (furthermore this
doesn’t always work due to tricks used in GRT). For this, remove all the object files and make the .ali files
read-only.

$ rm *.o
$ chmod -w *.ali

You may then install the sources files and the .ali files. I have never tested this step.

You are now ready to use it.

Here is an example, test_grt.adb which displays the top level design name.

with System; use System;
with Grt.Avhpi; use Grt.Avhpi;
with Ada.Text_IO; use Ada.Text_IO;
with Ghdl_Main;

procedure Test_Grt is
-- VHPI handle.
H : VhpiHandleT;
Status : Integer;

-- Name.
Name : String (1 .. 64);
Name_Len : Integer;

begin
-- Elaborate and run the design.
Status := Ghdl_Main (0, Null_Address);

-- Display the status of the simulation.
Put_Line ("Status is " & Integer'Image (Status));

-- Get the root instance.
Get_Root_Inst(H);

(continues on next page)

14.7. Using GRT from Ada 71



GHDL Documentation, Release 1.0-dev

(continued from previous page)

-- Disp its name using vhpi API.
Vhpi_Get_Str (VhpiNameP, H, Name, Name_Len);
Put_Line ("Root instance name: " & Name (1 .. Name_Len));

end Test_Grt;

First, analyze and bind your design:

$ ghdl -a counter.vhdl
$ ghdl --bind counter

Then build the whole:

$ gnatmake test_grt -aL`grt_ali_path` -aI`grt_src_path` -largs
`ghdl --list-link counter`

Finally, run your design:

$ ./test_grt
Status is 0
Root instance name: counter

72 Chapter 14. Interfacing to other languages



CHAPTER 15

Implementation of VHDL

15.1 VHDL standards

Unfortunately, there are many versions of the VHDL language, and they aren’t backward compatible.

The VHDL language was first standardized in 1987 by IEEE as IEEE 1076-1987, and is commonly referred as
VHDL-87. This is certainly the most important version, since most of the VHDL tools are still based on this
standard.

Various problems of this first standard have been analyzed by experts groups to give reasonable ways of interpret-
ing the unclear portions of the standard.

VHDL was revised in 1993 by IEEE as IEEE 1076-1993. This revision is still well-known.

Unfortunately, VHDL-93 is not fully compatible with VHDL-87, i.e. some perfectly valid VHDL-87 programs
are invalid VHDL-93 programs. Here are some of the reasons:

• the syntax of file declaration has changed (this is the most visible source of incompatibility),

• new keywords were introduced (group, impure, inertial, literal, postponed, pure, reject, rol, ror, shared, sla,
sll, sra, srl, unaffected, xnor),

• some dynamic behaviours have changed (the concatenation is one of them),

• rules have been added.

Shared variables were replaced by protected types in the 2000 revision of the VHDL standard. This modification
is also known as 1076a. Note that this standard is not fully backward compatible with VHDL-93, since the type
of a shared variable must now be a protected type (there was no such restriction before).

Minor corrections were added by the 2002 revision of the VHDL standard. This revision is not fully backward
compatible with VHDL-00 since, for example, the value of the ‘instance_name attribute has slightly changed.

The latest version is 2008. Many features have been added, and GHDL doesn’t implement all of them.

You can select the VHDL standard expected by GHDL with the --std=STANDARD option, where STANDARD
is one of the list below:

87 Select VHDL-87 standard as defined by IEEE 1076-1987. LRM bugs corrected by later revisions are taken
into account.

93 Select VHDL-93; VHDL-87 file declarations are not accepted.

93c Select VHDL-93 standard with relaxed rules:

73



GHDL Documentation, Release 1.0-dev

• VHDL-87 file declarations are accepted;

• default binding indication rules of VHDL-02 are used. Default binding rules are often used, but they
are particularly obscure before VHDL-02.

00 Select VHDL-2000 standard, which adds protected types.

02 Select VHDL-2002 standard.

08 Select VHDL-2008 standard (partially implemented).

Multiple standards can be used in a design:

GROUP VHDL Standard
87 87
93 93, 93c, 00, 02
08 08

Note: The standards in each group are considered compatible: you can elaborate a design mixing these standards.
However, standards of different groups are not compatible.

15.2 PSL support

GHDL implements a subset of PSL.

15.2.1 PSL implementation

A PSL statement is considered a process, so it’s not allowed within a process.

All PSL assertions must be clocked (GHDL doesn’t support unclocked assertion). Furthermore only one clock per
assertion is allowed.

You can either use a default clock like this:

default clock is rising_edge (CLK);
assert always
a -> eventually! b;

or use a clocked expression (note the use of parentheses):

assert (always a -> next[3](b)) @rising_edge(clk);

Of course only the simple subset of PSL is allowed.

Currently the built-in functions are not implemented, see issue #662.

15.2.2 PSL usage

PSL annotations embedded in comments

GHDL understands embedded PSL annotations in VHDL files:

-- psl default clock is rising_edge (CLK);
-- psl assert always
-- a -> eventually! b;

end architecture rtl;

74 Chapter 15. Implementation of VHDL

https://en.wikipedia.org/wiki/Property_Specification_Language
https://github.com/ghdl/ghdl/issues/662


GHDL Documentation, Release 1.0-dev

• A PSL assertion statement must appear within a comment that starts with the psl keyword. The keyword
must be followed (on the same line) by a PSL keyword such as assert or default. To continue a PSL
statement on the next line, just start a new comment.

Hint: As PSL annotations are embedded within comments, you must analyze your design with option -fpsl to
enable PSL annotations:

ghdl -a -fpsl vhdl_design.vhdl
ghdl -e vhdl_design

PSL annotations (VHDL-2008 only)

Since VHDL-2008 PSL is integrated in the VHDL language. You can use PSL in a VHDL(-2008) design without
embedding it in comments.

default clock is rising_edge (CLK);
assert always
a -> eventually! b;

end architecture rtl;

Hint: You have to use the --std=08 option:

ghdl -a --std=08 vhdl_design.vhdl
ghdl -e --std=08 vhdl_design

PSL vunit files

GHDL supports vunit (Verification Unit) files.

vunit vunit_name (design_name)
{

default clock is rising_edge(clk);
assert always cnt /= 5 abort rst;

}

• A vunit can contain PSL and VHDL code.

• It is bound to a VHDL entity or an instance of it.

• The PSL vunit is in the same scope as the VHDL design it is bound to. You have access to all objects (ports,
types, signals) of the VHDL design.

Hint: The PSL vunit file has to be analyzed/elaborated together with the VHDL design file, for example:

ghdl -a --std=08 vhdl_design.vhdl vunit.psl
ghdl -e --std=08 vhdl_design

15.3 Source representation

According to the VHDL standard, design units (i.e. entities, architectures, packages, package bodies, and config-
urations) may be independently analyzed.

15.3. Source representation 75



GHDL Documentation, Release 1.0-dev

Several design units may be grouped into a design file.

In GHDL, a system file represents a design file. That is, a file compiled by GHDL may contain one or more design
units.

It is common to have several design units in a design file.

GHDL does not impose any restriction on the name of a design file (except that the filename may not contain any
control character or spaces).

GHDL does not keep a binary representation of the design units analyzed like other VHDL analyzers. The sources
of the design units are re-read when needed (for example, an entity is re-read when one of its architectures is
analyzed). Therefore, if you delete or modify a source file of a unit analyzed, GHDL will refuse to use it.

15.4 Library database

Each design unit analyzed is placed into a design library. By default, the name of this design library is work;
however, this can be changed with the --work option of GHDL.

To keep the list of design units in a design library, GHDL creates library files. The name of these files is
<LIB_NAME>-obj<GROUP>.cf, where <LIB_NAME> is the name of the library, and <GROUP> the VHDL
version (87, 93 or 08) used to analyze the design units.

For details on GROUP values see section VHDL standards.

You don’t have to know how to read a library file. You can display it using the -d of ghdl. The file contains the
name of the design units, as well as the location and the dependencies.

The format may change with the next version of GHDL.

15.5 Top entity

There are some restrictions on the entity being at the apex of a design hierarchy:

• The generic must have a default value, and the value of a generic is its default value.

• The ports type must be constrained.

15.6 Using vendor libraries

Many vendors libraries have been analyzed with GHDL. There are usually no problems. Be sure to use the
--work option. However, some problems have been encountered. GHDL follows the VHDL LRM (the manual
which defines VHDL) more strictly than other VHDL tools. You could try to relax the restrictions by using the
--std=93c, -fexplicit, -frelaxed-rules and --warn-no-vital-generic.

76 Chapter 15. Implementation of VHDL



CHAPTER 16

Implementation of VITAL

This chapter describes how VITAL is implemented in GHDL. Support of VITAL is really in a preliminary stage.
Do not expect too much of it as of right now.

16.1 VITAL packages

The VITAL standard or IEEE 1076.4 was first published in 1995, and revised in 2000.

The version of the VITAL packages depends on the VHDL standard. VITAL 1995 packages are used with the
VHDL 1987 standard, while VITAL 2000 packages are used with other standards. This choice is based on the
requirements of VITAL: VITAL 1995 requires the models follow the VHDL 1987 standard, while VITAL 2000
requires the models follow VHDL 1993.

The VITAL 2000 packages were slightly modified so that they conform to the VHDL 1993 standard (a few
functions are made pure and a few impure).

16.2 VHDL restrictions for VITAL

The VITAL standard (partially) implemented is the IEEE 1076.4 standard published in 1995.

This standard defines restriction of the VHDL language usage on VITAL model. A VITAL model is a design unit
(entity or architecture) decorated by the VITAL_Level0 or VITAL_Level1 attribute. These attributes are defined in
the ieee.VITAL_Timing package.

Currently, only VITAL level 0 checks are implemented. VITAL level 1 models can be analyzed, but GHDL
doesn’t check they comply with the VITAL standard.

Moreover, GHDL doesn’t check (yet) that timing generics are not read inside a VITAL level 0 model prior the
VITAL annotation.

The analysis of a non-conformant VITAL model fails. You can disable the checks of VITAL restrictions with the
–no-vital-checks. Even when restrictions are not checked, SDF annotation can be performed.

77



GHDL Documentation, Release 1.0-dev

16.3 Backannotation

Backannotation is the process of setting VITAL generics with timing information provided by an external files.

The external files must be SDF (Standard Delay Format) files. GHDL supports a tiny subset of SDF version 2.1.
Other version numbers can be used, provided no features added by later versions are used.

Hierarchical instance names are not supported. However you can use a list of instances. If there is no instance, the
top entity will be annotated and the celltype must be the name of the top entity. If there is at least one instance, the
last instance name must be a component instantiation label, and the celltype must be the name of the component
declaration instantiated.

Instances being annotated are not required to be VITAL compliant. However generics being annotated must follow
rules of VITAL (e.g., type must be a suitable vital delay type).

Currently, only timing constraints applying on a timing generic of type VitalDelayType01 has been implemented.
This SDF annotator is just a proof of concept. Features will be added with the following GHDL release.

16.4 Negative constraint calculation

Negative constraint delay adjustments are necessary to handle negative constraints such as a negative setup time.
This step is defined in the VITAL standard and should occur after backannotation.

GHDL does not do negative constraint calculation. It fails to handle models with negative constraint. I hope to be
able to add this phase soon.

78 Chapter 16. Implementation of VITAL



CHAPTER 17

Examples

This sections contains advanced examples using specific features of the language, the tool, or interaction with
third-party projects. It is suggested for users who are new to either GHDL or VHDL to read Quick Start Guide
first.

17.1 Data exchange through VHPIDIRECT

17.1.1 VUnit

VUnit is an open source unit testing framework for VHDL/SystemVerilog. Sharing memory buffers between
foreign C or Python applications and VHDL testbenches is supported through GHDL’s VHPIDIRECT features.
Buffers are accessed from VHDL as either strings, arrays of bytes or arrays of 32 bit integers. See VUnit example
external buffer for details about the API.

17.1.2 ghdlex and netpp

netpp (network property protocol) is a communication library allowing to expose variables or other properties
of an application to the network as abstract ‘Properties’. Its basic philosophy is that a device always knows
its capabilities. netpp capable devices can be explored by command line, Python scripts or GUI applications.
Properties of a device - be it virtual or real - are typically described by a static description in an XML device
description language, but they can also be constructed on the fly.

ghdlex is a set of C extensions to facilitate data exchange between a GHDL simulation and external applications.
VHPIDIRECT mechanisms are used to wrap GHDL data types into structures usable from a C library. ghdlex
uses the netpp library to expose virtual entities (such as pins or RAM) to the network. It also demonstrates simple
data I/O through unix pipes. A few VHDL example entities are provided, such as a virtual console, FIFOs, RAM.

The author of netpp and ghdlex is also working on MaSoCist, a linux’ish build system for System on Chip designs,
based on GHDL. It allows to handle more complex setup, e.g. how a RISC-V architecture (for example) is regress-
tested using a virtual debug interface.

79

https://github.com/VUnit/vunit
https://github.com/VUnit/vunit/tree/master/examples/vhdl/external_buffer
https://section5.ch/index.php/netpp/
https://github.com/hackfin/ghdlex
https://section5.ch/index.php/netpp/
https://github.com/hackfin/MaSoCist


GHDL Documentation, Release 1.0-dev

80 Chapter 17. Examples



Part III

Development

81





CHAPTER 18

Debugging

18.1 Simulation and runtime debugging options

Besides the options described in Options, GHDL passes any debugging options (those that begin with -g) and
optimizations options (those that begin with -O or -f) to GCC. Refer to the GCC manual for details. Moreover,
some debugging options are also available, but not described here. The --help option lists all options available,
including the debugging ones.

--trace-signals
Display signals after each cycle.

--trace-processes
Display process name before each cycle.

--stats
Display run-time statistics.

--disp-order
Display signals order.

--disp-sources
Display sources while displaying signals.

--disp-sig-types
Display signal types.

--disp-signals-map
Display map bw declared signals and internal signals.

--disp-signals-table
Display internal signals.

--checks
Do internal checks after each process run.

--activity=<LEVEL>
Watch activity of LEVEL signals: LEVEL is all, min (default) or none (unsafe).

--dump-rti
Dump Run Time Information (RTI).

83

https://docs.python.org/3.6/using/cmdline.html#cmdoption-help


GHDL Documentation, Release 1.0-dev

--bootstrap
Allow --work=std

18.1.1 GNU Debugger (GDB)

Warning: Debugging VHDL programs using GDB is possible only with GCC/LLVM.

GDB is a general purpose debugger for programs compiled by GCC. Currently, there is no VHDL support for
GDB. It may be difficult to inspect variables or signals in GDB. However, it is still able to display the stack frame
in case of error or to set a breakpoint at a specified line.

GDB can be useful to catch a runtime error, such as indexing an array beyond its bounds. All error check subpro-
grams call the __ghdl_fatal procedure. Therefore, to a catch runtime error, set a breakpoint like this:

(gdb) break __ghdl_fatal

When the breakpoint is hit, use the where or bt command to display the stack frames.

84 Chapter 18. Debugging



CHAPTER 19

Coding Style

19.1 Ada

Ada subset: use only a simple (VHDL like) subset of Ada: no tasking, no controlled types. . . VHDL users should
easily understand that subset. Allowed Ada95 features: the standard library, child packages. Use assertions.

We try to follow the ‘GNU Coding Standards’ when possible: comments before declarations, one space at the end
of sentences, finish sentences with a dot. But: 2 spaces for indentation in code blocks.

No trailing spaces, no TAB (HT).

Subprograms must have a comment before to describe them, like:

-- Analyze the concurrent statements of PARENT.
procedure Sem_Concurrent_Statement_Chain (Parent : Iir);

The line before the comment must be a blank line (unless this is the first declaration). Don’t repeat the comment
before the subprogram body.

• For subprograms:

1. Declare on one line when possible:

function Translate_Static_Aggregate (Aggr : Iir) return O_Cnode

2. If not possible, put the return on the next line:

function Translate_Static_String (Str_Type : Iir; Str_Ident : Name_Id)
return O_Cnode

3. If not possible, put parameters and return on the next line:

function Create_String_Literal_Var_Inner
(Str : Iir; Element_Type : Iir; Str_Type : O_Tnode) return Var_Type

4. If not possible, return on the next line:

function Translate_Shortcut_Operator
(Imp : Iir_Implicit_Function_Declaration; Left, Right : Iir)
return O_Enode

85



GHDL Documentation, Release 1.0-dev

5. If not possible, one parameter per line, just after subprogram name:

procedure Translate_Static_Aggregate_1 (List : in out O_Array_Aggr_List;
Aggr : Iir;
Info : Iir;
El_Type : Iir)

6. If not possible, add a return after subprogram name:

function Translate_Predefined_TF_Array_Element
(Op : Predefined_Boolean_Logical;
Left, Right : Iir;
Res_Type : Iir;
Loc : Iir)

return O_Enode

7. If not possible, ask yourself what is wrong! Shorten a name.

• Rule for the ‘is’: on a new line only if the declarative part is not empty:

procedure Translate_Assign (Target : Mnode; Expr : Iir; Target_Type :
→˓Iir)
is

Val : O_Enode;
begin

vs.

function Translate_Static_Range_Dir (Expr : Iir) return O_Cnode is
begin

If the parameter line is too long with the ‘is’, put in on a separate line:

procedure Predeclare_Scope_Type
(Scope : in out Var_Scope_Type; Name : O_Ident) is

• Generic instantiation: put the generic actual part on a new line:

procedure Free is new Ada.Unchecked_Deallocation
(Action_List, Action_List_Acc);

• For if/then statement:

1. ‘then’ on the same line:

if Get_Expr_Staticness (Decl) = Locally then

2. If not possible, ‘then’ is alone on its line aligned with the ‘if’:

if Expr = Null_Iir
or else Get_Kind (Expr) = Iir_Kind_Overflow_Literal

then

3. For a multiline condition, ‘or else’ and ‘and then’ should start lines.

• ‘Local’ variable declaration: Do not initialize variables, constants must be declared before variables:

is
N_Info : constant Iir := Get_Sub_Aggregate_Info (Info);
Assoc : Iir;
Sub : Iir;

begin

If the initialization expression has a side effect (such as allocation), do not use a constant.

86 Chapter 19. Coding Style



GHDL Documentation, Release 1.0-dev

19.2 Shell

Ubuntu uses dash instead of bash when a shell script is run. As a result, some functionalities, such as arrays like
array[1], are not supported. Therefore, build scripts in dist/linux should not use those functionalities unless
they are sourced in a bash shell. The same applies to the scripts in testsuite.

19.3 Guidelines to edit the documentation

1) It’s better for version control systems and diff tools to break lines at a sensible number of characters. Long
lines appear as one diff. Also merging is more complex because merges are line based. Long unbreakable
items may be longer (links, refs, etc.). We chose to use 160 chars.

2) Please indent all directive content by 3 spaces (not 2, and no tabs).

3) Please use * as an itemize character, since - and + are supported by docutils, but not officially supported
by Sphinx.

4) Please underline all headlines with at least as many characters as the headline is long. Following the Python
pattern for headlines the levels are:

############

************ (sometimes skipped in small documents)
============
-------------------
‘”””””””””””’

5) It’s not required to write

:samp:`code`

The default role for

``code``

is samp. :samp: is only required when you want to write italic text in code text.

:samp:`print 1+{variable}`

Now, variable becomes italic.

Please simplify all usages of :samp:`code` to ``code`` for readability. Here are the regular expres-
sions for an editor like Notepad++:

• Search pattern:: (.+?)

• Replace pattern:: \1

6) Each backend has one folder and each platform/compiler has one file. Please note that page headlines are
different from ToC headline:

.. toctree::
:hidden:

ToC entry <file1>
file2

7) Documentation should not use “you”, “we”, . . . , because it’s not an interactive conversation or informal
letter. It’s like a thesis, everything is structured and formal. However, to make it more friendly to newcomers,
we agree to allow informal language in the section Quick Start Guide.

8) Please keep errors to a minimum.

19.2. Shell 87



GHDL Documentation, Release 1.0-dev

19.3.1 Guidelines to edit section ‘Building’

We prefer a text block, which explains how a compilation works, what we can configure for that backend, etc.
After that, we prefer a code block with e.g. bash instructions on how to compile a backend. A list of instructions
with embedded bash lines is not helpful. An experienced, as well as novice user, would like to copy a set of
instructions into the shell. But it should be stated what these instructions will do. Complex flows like for GCC,
can be split into multiple shell code blocks. Moreover, we find it essential to demonstrate when and where to
change directories.

We would like to see a list like:

• gcc (Gnu Compiler Collection)

• gcc-gnat (Ada compiler for GCC)

• llvm-del (LLVM development package)

• . . .

The goal is also to explain what a user is installing and what the few lines in the build description do. Now
they know the name, can search for similar names if they have another package manager or distro or can ask
Google/Wikipedia. We often find many build receipts with cryptic shell code and to execute this unknown stuff
with sudo is not comfortable. We would like to know what it does before hitting enter.

19.4 Documentation configuration

• Python snippet for Sphinx’s conf.py to extract the current version number from Git (latest tag name). [#200,
#221]

• Reference genindex.html from the navigation bar. [#200]

• Create “parts” (LaTeX terminology / chapter headlines) in navigation bar. [#200]

• Intersphinx files [#200]

– To decompress the inventory file: curl -s http://ghdl.readthedocs.io/en/latest/objects.inv | tail -
n+5 | openssl zlib -d. From how-to-uncompress-zlib-data-in-unix.

– External ref and link to section:

:ref:`GHDL Roadmap <ghdl:CHANGE:Roadmap>`

– External ref to option (no link):

:ghdl:option:`--ieee`
:option:`ghdl:--ieee`

88 Chapter 19. Coding Style

https://github.com/ghdl/ghdl/issues/200
https://github.com/ghdl/ghdl/issues/221
https://github.com/ghdl/ghdl/issues/200
https://github.com/ghdl/ghdl/issues/200
https://github.com/ghdl/ghdl/issues/200
http://unix.stackexchange.com/questions/22834/how-to-uncompress-zlib-data-in-unix


CHAPTER 20

Roadmap | Future Improvements

We have several axes for GHDL improvements:

• Synthesis

• Full support of VHDL-2008

• Optimization (simulation speed)

• Better diagnostics messages (warning and error)

• Graphical tools (to see waves and to debug)

• Style checks

• VITAL acceleration

20.1 Documentation

• Using/Synthesis: formal verification, etc.

• Development/libghdl. How to interact with GHDL through libghdl and/or libghdl-py.

• Development/Related Projects. Brief discussion about similarities/differences with other open source
projects such as rust_hdl or pyVHDLParser.

• Usage/Docker. Probably copy/convert README.md and USE_CASES.md in ghdl/docker #166.

• Usage/Language Server.

• Usage/Examples/Coverage. Code coverage in GHDL is a side effect of using GCC as a backend. In the
future, GCC backend support might be dropped in favour of mcode and LLVM. To do so, code coverage
with LLVM should be supported first. Anyway, comments/bits of info should be gathered somewhere in the
docs, along with references to gcov, lcov, etc.

• Usage/Examples/UART. Dossmatik’s UART and unisim guides. We have *.doc sources to be converted
to Sphinx.

• Usage/Examples/Free Range VHDL. https://github.com/fabriziotappero/Free-Range-VHDL-book

• It is possible to add waveforms with wavedrom, since there is a sphinx extension available.

89

https://github.com/ghdl/ghdl/issues/166
https://github.com/fabriziotappero/Free-Range-VHDL-book


GHDL Documentation, Release 1.0-dev

20.2 GSOC Ideas

This page contains ideas for enhancing GHDL that can fit internship programs, such as Google Summer of Code.

20.2.1 VHDL frontend for Yosys

Yosys is an open-source synthesis tool with built-in Verilog support and partial SystemVerilog support. Yosys
plugin is an experimental plugin for Yosys that allows to use GHDL. Although functional, Synthesis is work in
progress: multiple features are not supported yet, and others need to be tested for bugs.

Note:

• FOSSI GSOC 2019 | VHDL front-end for Yosys

• FOSSI GSOC 2018 | VHDL Frontend for Yosys

20.2.2 Profiling support

Currently, GHDL does not include profiling features, which would allow to speed-up simulations and/or to detect
hotspots in user designs.

Note:

• FOSSI GSOC 2018 | Profiling support

• #60

20.2.3 Improve LLVM backend

There are several possible enhancements to the current implementation of LLVM backend

• Debugging is supported with LLVM 3.5 only, although up to version 9.0 is supported for simulation.

• The C++ API of LLVM should be used instead of the C API.

• There was no real try to find the best order of optimization passes. This can significantly improve perfor-
mance, since GHDL is currently single-threaded and CPU-bound.

• Code coverage is not supported.

Note:

• FOSSI GSOC 2018 | GHDL: Improve LLVM backend

• #866, #744, #286

20.2.4 Support 64-bit with mcode on Windows

The built-in in-memory code generator (mcode backend), is supported on 64 bit GNU/Linux, but not on Windows
64 bit. Compared to other backends, this would provide a lightweight and fast analyser, although it doesn’t try to
optimise.

Note:

• FOSSI GSOC 2018 | Support 64-bit with mcode on Windows

90 Chapter 20. Roadmap | Future Improvements

https://summerofcode.withgoogle.com/
https://github.com/YosysHQ/yosys
https://fossi-foundation.org/gsoc19-ideas.html#vhdl-front-end--for-yosys
https://fossi-foundation.org/gsoc18-ideas.html#vhdl-frontend-for-yosys
https://fossi-foundation.org/gsoc18-ideas.html#ghdl-profiling-support
https://github.com/ghdl/ghdl/issues/60
https://fossi-foundation.org/gsoc18-ideas.html#ghdl-improve-llvm-backend
https://github.com/ghdl/ghdl/issues/866
https://github.com/ghdl/ghdl/issues/744
https://github.com/ghdl/ghdl/issues/286
https://fossi-foundation.org/gsoc18-ideas.html#ghdl-support-64-bit-with-mcode-on-windows


GHDL Documentation, Release 1.0-dev

• #657

20.2.5 Mixed-language (VHDL-Verilog)

Multiple proofs of concept exist for co-execution of HDL simulators with other tools, such as QEMU. However,
there is no open-source solution that allows to co-simulate VHDL and Verilog sources using recent versions of the
standards. Some possible approaches for this task are:

• Use procedural interfaces, VPI or VHPIDIRECT (see Interfacing to other languages).

• Transpile/convert the HDLs into a common intermediate representation.

• Have GHDL use the API of another tool or the other way round.

Note:

• FOSSI GSOC 2018 | Framework for Mixed-Language Simulation

• FOSSI GSOC 2017 | Open Source Mixed-Language HDL Simulation

• #908, #800

20.2.6 Mixed-signal (Digital-Analog)

Thre are three different approaches for mixed-signal simulation with GHDL:

• Built-in VHDL-AMS support. It is currently possible to analyze VHDL-AMS files with GHDL (almost all
the features are handled). However, it is analysis only (yet). A DAE solver needs to be pluged into GHDL
compute the simulation.

• Co-execution of GHDL and an analog simulator through VPI or VHPIDIRECT (see Interfacing to other
languages).

• Generation of simulation models from VHDL-AMS, like ADMS.

Note:

• #1052, #162

20.2.7 C APIs

Currently, GHDL can be wrapped in a foreign language (such as Ada or C) through VHPIDIRECT (see Interfacing
to other languages). However, runtime management of the simulation is not supported. The API should be
enhanced to support stepped execution. Moreover, interfacing with some types is not straightforward. Header files
with the definition of those types would simplify data transference between language domains during simulation.

Note:

• #1059, #1053, #894, #819, #803, #800

20.2.8 Language server

ghdl-language-server is an experimental LSP server written in Python (which uses libghdl-py), along with clients
for different editors (e.g. VSCode, Emacs or Vim). Although functional, it is work in progress: multiple features
are not supported yet, and others need to be tested for bugs.

20.2. GSOC Ideas 91

https://github.com/ghdl/ghdl/issues/657
https://fossi-foundation.org/gsoc18-ideas.html#framework-for-mixed-language-simulation
https://fossi-foundation.org/gsoc17-ideas.html#open-source-mixed-language-hdl-simulation
https://github.com/ghdl/ghdl/issues/908
https://github.com/ghdl/ghdl/issues/800
https://github.com/ghdl/ghdl/issues/1052
https://github.com/ghdl/ghdl/issues/162
https://github.com/ghdl/ghdl/issues/1059
https://github.com/ghdl/ghdl/issues/1053
https://github.com/ghdl/ghdl/issues/894
https://github.com/ghdl/ghdl/issues/819
https://github.com/ghdl/ghdl/issues/803
https://github.com/ghdl/ghdl/issues/800
https://github.com/ghdl/ghdl-language-server
https://github.com/ghdl/ghdl#project-structure


GHDL Documentation, Release 1.0-dev

20.2.9 Project configuration file format

ghdl-language-server supports a configuration file named hdl-prj.json. The format of this file is undocumented
and lightly defined. This is because it would be desirable to use a configuration format that can be shared with
other similar tools, such as rust_hdl or pyVHDLParser. In the context of GHDL, the same configuration file might
be used for the language server, simulation, synthesis, etc.

Note:

• ghdl/ghdl-language-server#12, jeremiah-c-leary/vhdl-style-guide#312

20.2.10 Packaging for Windows and/or macOS

GHDL can be installed with the most known package managers on GNU/Linux distributions (apt, dnf, pacman,
etc.). However, this is not the case on Windows and/or macOS.

On Windows, PKGBUILD files for MSYS2 are available, but not upstreamed. Nonetheless, it would be desirable
to distribute an standalone package that does not depend on a ful MSYS2 installation (see Building GHDL from
Sources).

On macOS, a Homebrew formula might be written.

Ideally, these packages would be built/generated and tested in a CI workflow.

Note:

• msys2/MINGW-packages#5757

• #744, Homebrew/homebrew-cask#47256

92 Chapter 20. Roadmap | Future Improvements

https://github.com/ghdl/ghdl-language-server
https://github.com/kraigher/rust_hdl
https://github.com/Paebbels/pyVHDLParser
https://github.com/ghdl/ghdl-language-server/issues/12
https://github.com/jeremiah-c-leary/vhdl-style-guide/issues/312
https://github.com/msys2/MINGW-packages/pull/5757
https://github.com/ghdl/ghdl/issues/744
https://github.com/Homebrew/homebrew-cask/pull/47256


Part IV

Internals

93





CHAPTER 21

Overview

GHDL is architectured like a traditionnal compiler. It has:

• a driver (sources in src/ghdldrv) to call the programs (compiler, assembler, linker) if needed.

• a runtime library named GRT (sources in src/grt) to help execution at run-time. This ensures that execution
is cycle-accurate.

• a front-end (sources in src/vhdl) to parse and analyse VHDL. See Front-end and AST .

• multiple back-ends to generate either code or netlists.

– Three for simulation (sources are in src/ortho): mcode, LLVM and GCC. See Building GHDL from
Sources.

– Two for synthesis (sources in src/synth): –synth and Yosys plugin.

The architecture is modular. For example, the front-end in the libghdl library is used for the language server.

The main work is performed by the front-end, which is documented in the next chapter.

95

https://github.com/ghdl/ghdl/blob/master/src/ghdldrv
https://github.com/ghdl/ghdl/blob/master/src/grt
https://github.com/ghdl/ghdl/blob/master/src/vhdl
https://github.com/ghdl/ghdl/blob/master/src/ortho
https://github.com/ghdl/ghdl/blob/master/src/synth


GHDL Documentation, Release 1.0-dev

96 Chapter 21. Overview



CHAPTER 22

Front-end

Input files (or source files) are read by files_map.ad[sb]. Only regular files can be read, because they are read
entirely before being scanned. This simplifies the scanner, but this also allows to have a unique index for each
character in any file. Therefore the source location is a simple 32-bit integer whose type is Location_Type. From
the location, files_map can deduce the source file (type is Source_File_Entry) and then the offset in the source file.
There is a line table for each source file in order to speed-up the conversion from file offset to line number and
column number.

The scanner (file vhdl-scanner.ad[sb]) reads the source files and creates token from them. The tokens are
defined in file vhdl-tokens.ads. Tokens are scanned one by one, so the scanner doesn’t keep in memory the
previous token. Integer or floating point numbers are special tokens because beside the token itself there is also a
variable for the value of the number.

For identifiers there is a table containing all identifiers. This is implemented by file name_table.ad[sb].
Each identifier is associated to a 32-bit number (they are internalized). So the number is used to reference an
identifier. About one thousand identifiers are predefined (by std_names.ad[sb]). Most of them are reserved
identifiers (or keywords). When the scanner find an identifier, it checks if it is a keyword. In that case it changes
the token to the keyword token.

The procedure scan is called to get the next token. The location of the token and the location after the token are
available to store it in the parser tree.

The main clieant of the scanner is the parser.

97



GHDL Documentation, Release 1.0-dev

98 Chapter 22. Front-end



CHAPTER 23

AST

23.1 Introduction

The AST is the main data structure of the front-end and is created by the parser.

AST stands for Abstract Syntax Tree.

This is a tree because it is a graph with nodes and links between nodes. As the graph is acyclic and each node but
the root has only one parent (the link that point to it). In the front-end there is only one root which represent the
set of libraries.

The tree is a syntax tree because it follows the grammar of the VHDL language: there is for example a node per
operation (like or, and or +), a node per declaration, a node per statement, a node per design unit (like entity or
architecture). The front-end needs to represent the source file using the grammar because most of the VHDL rules
are defined according to the grammar.

Finally, the tree is abstract because it is an abstraction of the source file. Comments and layout aren’t kept in the
syntax tree. Furthermore, if you rename a declaration or change the value of a literal, the tree will have exactely
the same shape.

But we can also say that the tree is neither abstract, nor syntaxic and nor a tree.

It is not abstract because it contains all the information from the source file (except comments) are available in the
AST, inclusing the location. So the source file can be reprinted (the name unparsed is also used) from the AST. If
a mechanism is also added to deal with comments, the source file can even be pretty-printed from the AST.

It is not purely syntaxic because the semantic analysis pass decorate the tree with semantic information. For
example the type of each expression and sub-expression is computed. This is necessary to detect some semantic
error like assigning an array to an integer.

Finally, it is not anymore a tree because new links are added during semantic analysis. Simple names are linked
to their declaration.

23.2 The AST in GHDL

The GHDL AST is described in file vhdl-nodes.ads.

An interesting particularity about the AST is the presence of a meta-model.

99



GHDL Documentation, Release 1.0-dev

The meta-model is not formally described. What would be the meta-meta-model is very simple: there are elements
and attributes. An element is composed of attributes, and an attribute is either a value (a flag, an integer, an
enumeration) or a link to an element.

(When someone wants to be clever, he often speaks about meta-model in order to confuse you. Don’t let him
impress you. The trick is to answer him with any sentence containing ‘meta-meta-model’).

In the GHDL meta-mode, there are only 3 elements:

• variable list of nodes (List). These are like vectors as the length can be changed.

• Fixed lists of nodes (Flist). The length of a fixed list is defined at creation.

• Nodes. A node has a kind (Iir_Kind which is also defined in the file), and fields. The kind is set at creation
and cannot be changed, while fields can be.

Or without using the word meta-model, the AST is composed of nodes and lists.

The meta-model describes the type of the attributes: most of them are either a node reference, a boolean flag or a
enumerated type (like Iir_Staticness). But there are also links: a reference to another node or to a list.

The accessors for the node are generated automatically by the python script src/xtools/pnodes.py.

23.3 Why a meta-model ?

All ASTs could have a meta-model, because the definition of elements and attributes is very generic. But there
is a detail: the definition of an element is static. So for each node, the list of attribute and their type is static and
each list is a list of the same element type. So there is no bag, nor dynamic typing. This is per the definition of the
meta-meta-model.

But in GHDL there is an API at the meta-model level in file vhdl-nodes_meta.ads. There is the list of all
attribute types in enumeration Types_Enum. There is the list of all possible attributes in enumeration Fields_Enum.
For a particular kind of node, you can get the list of fields with Get_Field and for every type, there is API to get
or set any field of any node.

Having a meta-model API allows to build algorithm that deals with any node. The dumper (in file
vhdl-disp_tree.ad[sb]) is used to dump a node and possibly its sub-nodes. This is very useful while
debugging GHDL. It is written using the meta-model, so it knows how to display a boolean and the various other
enumerated types, and how to display a list. To display a node, it just gets the kind of the type, prints the kind
name and queries all the fields of the node. There is nothing particular to a specific kind, so you don’t need to
modify the dumper if you add a node.

The dumper won’t be a strong enough reason by itself to have a meta-model. But the pass to create instances is a
good one. When a vhdl-2008 package is instantiated, at least the package declaration is created in the AST (this
is needed because there are possibly new types). And creating an instance using the meta-model is much simpler
(and much more generic) that creating the instance using directly the nodes. The code to create instances is in files
vhdl-sem_inst.ad[sb].

The meta-model API is moslty automatically generated by the python script.

23.4 Dealing with ownership

The meta-model also structures the tree, because there is a notion of ownership: every element (but the root) has
only one parent that owns it, and there are no cycle in the ownership. So the tree is really a tree.

That simplifies algorithms because it is easier to walk a tree than a graph. It is also easier to free a sub-tree than a
sub-graph.

Getting a real tree from the parser might look obvious, but it is not. Consider the following VHDL declaration:

variable v1, v2 : std_logic_vector (1 downto 0) := "00";

100 Chapter 23. AST



GHDL Documentation, Release 1.0-dev

Both variables v1 and v2 share the same type and the same initial value. The GHDL AST uses two different
strategies:

• For the type, there is two fields in the node: subtype_indication and type. The
subtype_indication is owned and set only on the first variable to the output of the parser. The
type field is a reference and set on all variables to the result of analysis of subtype_indication.

• For the initial value, there is only one field default_value that is set on all variables. But the ownership
is controlled by a flag in the node (an attribute) named is_ref. It is set to false on the first variable and
true for the others.

The notion of ownership is highlighten by the Rust language, and indeed this is an important notion. The imple-
mentation of the Rust AST has to be investigated.

23.5 Node Type

TBC: 32-bit, extensions.

23.5. Node Type 101



GHDL Documentation, Release 1.0-dev

102 Chapter 23. AST



Part V

Index

103





CHAPTER 24

Index

105



GHDL Documentation, Release 1.0-dev

106 Chapter 24. Index



Index

Symbols
-AS<=COMMAND>

ghdl command line option, 66
-GHDL1<=COMMAND>

ghdl command line option, 66
-LINK<=COMMAND>

ghdl command line option, 66
-PREFIX=<PATH>

ghdl command line option, 48
-activity=<LEVEL>

command line option, 83
-assert-level=<LEVEL>

ghdl command line option, 56
-bind <[options] primary_unit

[secondary_unit]>
ghdl command line option, 65

-bootstrap
command line option, 83

-checks
command line option, 83

-chop <files...>
ghdl command line option, 64

-clean <[options]>
ghdl command line option, 51

-copy <-work=name [options]>
ghdl command line option, 51

-dir <[options] [libs]>
ghdl command line option, 50

-disp-config <[options]>
ghdl command line option, 63

-disp-order
command line option, 83

-disp-sig-types
command line option, 83

-disp-signals-map
command line option, 83

-disp-signals-table
command line option, 83

-disp-sources
command line option, 83

-disp-standard <[options]>
ghdl command line option, 64

-disp-time

ghdl command line option, 56
-disp-tree=<KIND>

ghdl command line option, 58
-dump-rti

command line option, 83
-elab-run <[options...]

primary_unit [secondary_unit]
[simulation_options...]>

ghdl command line option, 45
-file-to-xml

ghdl command line option, 59
-format=<FORMAT>

ghdl command line option, 48
-fst=<FILENAME>

ghdl command line option, 58
-gen-depends <[options] primary

[secondary]>
ghdl command line option, 47

-gen-depends command, 46
-gen-makefile <[options] primary

[secondary]>
ghdl command line option, 46

-help
ghdl command line option, 57

-help, -h
ghdl command line option, 63

-ieee-asserts=<POLICY>
ghdl command line option, 56

-ieee=<IEEE_VAR>
ghdl command line option, 47

-lines <files...>
ghdl command line option, 65

-link <[options] primary_unit
[secondary_unit]>

ghdl command line option, 65
-list-link <primary_unit

[secondary_unit]>
ghdl command line option, 65

-max-stack-alloc=<N>
ghdl command line option, 56

-mb-comments, -C
ghdl command line option, 65

-no-run
ghdl command line option, 57

107



GHDL Documentation, Release 1.0-dev

-no-vital-checks
ghdl command line option, 48

-pp-html <[options] file...>
ghdl command line option, 64

-psl-report=<FILENAME>
ghdl command line option, 58

-read-wave-opt=<FILENAME>
ghdl command line option, 57

-remove <[options]>
ghdl command line option, 51

-sdf=<PATH=FILENAME>
ghdl command line option, 56

-stats
command line option, 83

-std=<STANDARD>
ghdl command line option, 47

-stop-delta=<N>
ghdl command line option, 56

-stop-time=<TIME>
ghdl command line option, 56

-syn-binding
ghdl command line option, 65

-synth <[options] files... -e
primary_unit [secondary_unit]>

ghdl command line option, 61
-synth <[options] primary_unit

[secondary_unit]>
ghdl command line option, 61

-trace-processes
command line option, 83

-trace-signals
command line option, 83

-unbuffered
ghdl command line option, 56

-vcd-nodate
ghdl command line option, 58

-vcd=<FILENAME>
ghdl command line option, 57

-vcdgz=<FILENAME>
ghdl command line option, 57

-version, -v
ghdl command line option, 64

-vital-checks
ghdl command line option, 48

-vpi-cflags
ghdl command line option, 52

-vpi-compile <command>
ghdl command line option, 51

-vpi-include-dir
ghdl command line option, 52

-vpi-ldflags
ghdl command line option, 52

-vpi-library-dir
ghdl command line option, 52

-vpi-link <command>
ghdl command line option, 51

-vpi-trace=<FILE>
ghdl command line option, 56

-vpi=<FILENAME>
ghdl command line option, 56

-warn-binding
ghdl command line option, 49

-warn-body
ghdl command line option, 49

-warn-default-binding
ghdl command line option, 49

-warn-delayed-checks
ghdl command line option, 49

-warn-error
ghdl command line option, 50

-warn-hide
ghdl command line option, 50

-warn-library
ghdl command line option, 49

-warn-nested-comment
ghdl command line option, 49

-warn-others
ghdl command line option, 50

-warn-parenthesis
ghdl command line option, 49

-warn-pure
ghdl command line option, 50

-warn-reserved
ghdl command line option, 49

-warn-runtime-error
ghdl command line option, 49

-warn-shared
ghdl command line option, 50

-warn-specs
ghdl command line option, 49

-warn-static
ghdl command line option, 50

-warn-unused
ghdl command line option, 50

-warn-vital-generic
ghdl command line option, 49

-wave=<FILENAME>
ghdl command line option, 58

-work=<LIB_NAME>
ghdl command line option, 47

-workdir=<DIR>
ghdl command line option, 47

-write-wave-opt=<FILENAME>
ghdl command line option, 57

-xref-html [options] files...
ghdl command line option, 58

-P<DIRECTORY>
ghdl command line option, 47

-Wa,<OPTION>
ghdl command line option, 66

-Wc,<OPTION>
ghdl command line option, 66

-Wl,<OPTION>
ghdl command line option, 66

-a <[options...] file...>
ghdl command line option, 44

108 Index



GHDL Documentation, Release 1.0-dev

-c <[options] file... -<e|r>
primary_unit [secondary_unit]>

ghdl command line option, 45
-e <[options...] primary_unit

[secondary_unit]>
ghdl command line option, 44

-f <file...>
ghdl command line option, 64

-fcaret-diagnostics
ghdl command line option, 50

-fcolor-diagnostics
ghdl command line option, 50

-fdiagnostics-show-option
ghdl command line option, 50

-fexplicit
ghdl command line option, 48

-fno-caret-diagnostics
ghdl command line option, 50

-fno-color-diagnostics
ghdl command line option, 50

-fno-diagnostics-show-option
ghdl command line option, 50

-fpsl
ghdl command line option, 48

-frelaxed
ghdl command line option, 48

-frelaxed-rules
ghdl command line option, 48

-fsynopsys
ghdl command line option, 47

-gGENERIC=VALUE
ghdl command line option, 55

-i <[options] file...>
ghdl command line option, 46

-m <[options] primary [secondary]>
ghdl command line option, 46

-r <[options...] primary_unit
[secondary_unit]
[simulation_options...]>

ghdl command line option, 44
-s <[options] files>

ghdl command line option, 45
-v

ghdl command line option, 48
‘__ghdl_fatal‘, 84
1076.3, 47
1076.4, 77
1076a, 73

Numbers
1076, 73
1164, 47

C
cmd analysis, 43
cmd analyze and elaborate, 45
cmd checking syntax, 45
cmd display configuration, 63

cmd display standard, 63
cmd elaborate and run, 45
cmd elaboration, 44
cmd file chop, 64
cmd file find, 64
cmd file lines, 64
cmd file pretty printing, 64
cmd GCC/LLVM binding, 65
cmd GCC/LLVM linking, 65
cmd GCC/LLVM list link, 65
cmd generate makefile, 46
cmd help, 63
cmd importing files, 45
cmd library clean, 50
cmd library copy, 51
cmd library directory, 50
cmd library remove, 51
cmd make, 46
cmd run, 44
cmd version, 64
cmd VPI cflags, 52
cmd VPI compile, 51
cmd VPI include dir, 52
cmd VPI ldflags, 52
cmd VPI library dir, 52
cmd VPI link, 51
command line option

-activity=<LEVEL>, 83
-bootstrap, 83
-checks, 83
-disp-order, 83
-disp-sig-types, 83
-disp-signals-map, 83
-disp-signals-table, 83
-disp-sources, 83
-dump-rti, 83
-stats, 83
-trace-processes, 83
-trace-signals, 83

create your own library, 50

D
display design hierarchy, 58
display time, 56
display ‘‘std.standard‘‘, 63
dump of signals, 57

E
environment variable

GHDL_PREFIX, 43, 63

F
foreign, 67

G
ghdl command line option

-AS<=COMMAND>, 66
-GHDL1<=COMMAND>, 66

Index 109



GHDL Documentation, Release 1.0-dev

-LINK<=COMMAND>, 66
-PREFIX=<PATH>, 48
-assert-level=<LEVEL>, 56
-bind <[options] primary_unit

[secondary_unit]>, 65
-chop <files...>, 64
-clean <[options]>, 51
-copy <-work=name [options]>, 51
-dir <[options] [libs]>, 50
-disp-config <[options]>, 63
-disp-standard <[options]>, 64
-disp-time, 56
-disp-tree=<KIND>, 58
-elab-run <[options...]

primary_unit [secondary_unit]
[simulation_options...]>, 45

-file-to-xml, 59
-format=<FORMAT>, 48
-fst=<FILENAME>, 58
-gen-depends <[options] primary

[secondary]>, 47
-gen-makefile <[options] primary

[secondary]>, 46
-help, 57
-help, -h, 63
-ieee-asserts=<POLICY>, 56
-ieee=<IEEE_VAR>, 47
-lines <files...>, 65
-link <[options] primary_unit

[secondary_unit]>, 65
-list-link <primary_unit

[secondary_unit]>, 65
-max-stack-alloc=<N>, 56
-mb-comments, -C, 65
-no-run, 57
-no-vital-checks, 48
-pp-html <[options] file...>, 64
-psl-report=<FILENAME>, 58
-read-wave-opt=<FILENAME>, 57
-remove <[options]>, 51
-sdf=<PATH=FILENAME>, 56
-std=<STANDARD>, 47
-stop-delta=<N>, 56
-stop-time=<TIME>, 56
-syn-binding, 65
-synth <[options] files...

-e primary_unit
[secondary_unit]>, 61

-synth <[options] primary_unit
[secondary_unit]>, 61

-unbuffered, 56
-vcd-nodate, 58
-vcd=<FILENAME>, 57
-vcdgz=<FILENAME>, 57
-version, -v, 64
-vital-checks, 48
-vpi-cflags, 52
-vpi-compile <command>, 51

-vpi-include-dir, 52
-vpi-ldflags, 52
-vpi-library-dir, 52
-vpi-link <command>, 51
-vpi-trace=<FILE>, 56
-vpi=<FILENAME>, 56
-warn-binding, 49
-warn-body, 49
-warn-default-binding, 49
-warn-delayed-checks, 49
-warn-error, 50
-warn-hide, 50
-warn-library, 49
-warn-nested-comment, 49
-warn-others, 50
-warn-parenthesis, 49
-warn-pure, 50
-warn-reserved, 49
-warn-runtime-error, 49
-warn-shared, 50
-warn-specs, 49
-warn-static, 50
-warn-unused, 50
-warn-vital-generic, 49
-wave=<FILENAME>, 58
-work=<LIB_NAME>, 47
-workdir=<DIR>, 47
-write-wave-opt=<FILENAME>, 57
-xref-html [options] files..., 58
-P<DIRECTORY>, 47
-Wa,<OPTION>, 66
-Wc,<OPTION>, 66
-Wl,<OPTION>, 66
-a <[options...] file...>, 44
-c <[options] file...

-<e|r> primary_unit
[secondary_unit]>, 45

-e <[options...] primary_unit
[secondary_unit]>, 44

-f <file...>, 64
-fcaret-diagnostics, 50
-fcolor-diagnostics, 50
-fdiagnostics-show-option, 50
-fexplicit, 48
-fno-caret-diagnostics, 50
-fno-color-diagnostics, 50
-fno-diagnostics-show-option, 50
-fpsl, 48
-frelaxed, 48
-frelaxed-rules, 48
-fsynopsys, 47
-gGENERIC=VALUE, 55
-i <[options] file...>, 46
-m <[options] primary

[secondary]>, 46
-r <[options...] primary_unit

[secondary_unit]
[simulation_options...]>, 44

110 Index



GHDL Documentation, Release 1.0-dev

-s <[options] files>, 45
-v, 48

GHDL_PREFIX, 43

I
IEEE 1076, 73
IEEE 1076.3, 47
IEEE 1076.4, 77
IEEE 1076a, 73
IEEE 1164, 47
ieee library, 47
interfacing, 67

M
Math_Complex, 54
Math_Real, 54

O
other languages, 67

S
SDF, 78
synopsys library, 47
synthesis command, 61

V
v00, 73
v02, 73
v08, 73
v87, 73
v93, 73
v93c, 73
value change dump, 57
vcd, 57
VHDL standards, 73
vhdl to html, 64
VHPI, 67
VHPIDIRECT, 67
VITAL, 77

W
WORK library, 47

Index 111


	What is VHDL?
	What is GHDL?
	Who uses GHDL?
	Contributing
	Reporting bugs
	Requesting enhancements
	Improving the documentation
	Fork, modify and pull-request
	Related interesting projects

	Copyrights | Licenses
	GNU GPLv2
	CC-BY-SA
	List of Contributors

	I Getting GHDL
	Releases and sources
	Downloading pre-built packages
	Downloading Source Files

	Building GHDL from Sources
	Directory structure
	mcode backend
	LLVM backend
	GCC backend

	Precompile Vendor Primitives
	Supported Vendors Libraries
	Supported Simulation and Verification Libraries
	Script Configuration
	Compiling on Linux
	Compiling on Windows
	Configuration Files


	II GHDL usage
	Quick Start Guide
	Hello world program
	Heartbeat module
	Full adder module and testbench
	Working with non-trivial designs

	Invoking GHDL
	Design building commands
	Design rebuilding commands
	Options
	Warnings
	Diagnostics Control
	Library commands
	VPI build commands
	IEEE library pitfalls

	Simulation (runtime)
	Simulation options
	Export waveforms
	Export hierarchy and references

	Synthesis
	Synthesis [--synth]
	Yosys plugin

	Additional Command Reference
	Environment variables
	Misc commands
	File commands
	GCC/LLVM only commands
	Options
	Passing options to other programs

	Interfacing to other languages
	Foreign declarations
	Linking foreign object files to GHDL
	Wrapping and starting a GHDL simulation from a foreign program
	Linking GHDL to Ada/C
	Dynamically loading foreign objects from within GHDL
	Dynamically loading GHDL
	Using GRT from Ada

	Implementation of VHDL
	VHDL standards
	PSL support
	Source representation
	Library database
	Top entity
	Using vendor libraries

	Implementation of VITAL
	VITAL packages
	VHDL restrictions for VITAL
	Backannotation
	Negative constraint calculation

	Examples
	Data exchange through VHPIDIRECT


	III Development
	Debugging
	Simulation and runtime debugging options

	Coding Style
	Ada
	Shell
	Guidelines to edit the documentation
	Documentation configuration

	Roadmap | Future Improvements
	Documentation
	GSOC Ideas


	IV Internals
	Overview
	Front-end
	AST
	Introduction
	The AST in GHDL
	Why a meta-model ?
	Dealing with ownership
	Node Type


	V Index
	Index
	Index


